
Chaining pairwise matches
using the program chain2dim

Manual

Stefan Kurtz∗

August 4, 2014

1 Introduction

The following paper gives an in-depth introduction to the problem of chaining matches between
two or more sequences. It also reports on different applications motivating the algorithms. The
global and local chaining algorithms implemented in our program chain2dim are also described
there.

Chaining Algorithms and Applications to Comparative Genomics. Enno Ohlebusch
& Mohamed I. Abouelhoda. Accepted for publication.

2 The program chain2dim and its options

chain2dim finds different kinds of chains in a given set of matches, namely:

• global chains without gap costs

• global chains with gap costs

• local chains

The program is called as follows:

chain2dim [options] matchfile

And here is a description of the options:
∗Zentrum für Bioinformatik, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany, E-mail:

kurtz@zbh.uni-hamburg.de

1

-global [gc|ov]
Compute global chains. If the additional argument gc is used, then global chains with gap
costs according to the L1-model are computed. If the additional argument ov is used, then
global chains with overlaps are computed.

-local [lspec]
Compute local chains with gaps costs according to the L1-model. If there is no optional
argument, then compute all local chains with a maximum score among all local chains. If
there is an optional argument lspec, this is allowed to have three different forms:

• If lspec is a positive integer, then this is a minimum score. All local chains whose
score is larger than or equal to the minimum score are reported.

• If lspec is a positive integer, say k, directly followed by the character b, then k specifies
the number of best (i.e. largest) scores for which local chains are reported. Suppose
that S is the set of all different scores of local chains. If |S| ≤ k, then let Sk = S. If
|S|> k, then let Sk be the subset of S consisting of the k largest scores in S. Then all
local chains which have a score s ∈ Sk are reported.

• If lspec is a positive integer smaller or equal to 100, say q, directly followed by the
character p, then q specifies the percentage below the maximum score. Let m be the
maximum score. Then all local chains with score larger than or equal to m · (1−⌊ q

100

⌋
) are reported.

-wf weightfactor
Specify a positive floating point value weightfactor by which the weight of each match is
multiplied when computing the score of a chain. This option requires either option -local

or option -global gc. The default weightfactor is 1.0. The weight factor is important to
influence the weight of matches relative to the gap costs in local chains. The smaller the
weight factor, the smaller the gaps between neighboring matches in a local chain. That is,
if you only want to see chains where the gaps between the matches are small, then specify
a small weightfactor smaller than 1.0. If you also want to see chains where the gaps between
the matches are long, then specify a large weightfactor.

-maxgap mg
Specify the maximal width mg of a gap between two consecutive fragments of a chain.
For example, if the first fragment ends at position q1 and the second starts at position
q2 > q1, then the gap size q2−q1−1 must be at least mg. This constraint must hold in both
dimensions.

-outprefix prefix
Specify that each chain is output into a seperate file whose name starts with prefix. In
particular, the ith chain (counting from 0) is output into a file filename-i.chain

-silent

Only report the length and the score of chains, but not the chains themselves.

2

-v

Be verbose, that is, report about the different steps of the computation as well as the re-
source requirements of the computation.

-version

Show the version of the Vmatch version, the program is part of. Also report the compila-
tion date and the compilation options.

-help

Show a summary of all options and terminate.

Either option -global or -local must be used.

3 Input and output format

The matchfile specifies matches line by line. Two formats are allowed to specify matches, namely
Vmatch-format and simple format. Both formats allow comment lines beginning with the char-
acter #. All lines which are not comment lines are match lines.

• The Vmatch-format is produced by the program vmatch. The first comment line is
mandatory. Each match line reports a match by its length and the start position in the
first and the second sequence. Among other values, the weight of the match is given. For
a detailed description of the Vmatch-format, see the corresponding manual pages.

• Each match line in the simple format reports a match by four or five integers. The integers
are separated by white spaces. The first two integers give the start position and the end
position of the match in the first sequence. The third and the fourth integers give the start
and the end position of the match in the second sequence. The optional fifth integer in the
line specifies the weight. Let l1 be the length of the match in the first sequence and l2 be
the length of the match in the second sequence. If the fifth integer in the line is missing,
then the weight is 2 ·min{l1, l2}−|l1− l2|. This is the largest score which can be achieved
when aligning two sequences of length l1 and l2, where each pair of matching characters
in the alignment is scoring 2, each mismatch is scoring -2, and each indel is scoring −1.

All match line in a matchfile must be in the same format. The matches a chain consists of, are
reported in the same format as the format used in the matchfile.

4 Examples

Consider a matchfile ecolicmp.vm in Vmatch-format, reporting 14 matches between the E.coli
K12 genome and the Ecoli O157:H7 genome.

3

$ cat ecolicmp.vm
args=-l 50 -q EcoliO157H7 EcoliK12

165 0 64 D 165 0 64 0 6.53e-87 330 100.00
165 0 393 D 165 0 410 0 6.53e-87 330 100.00
116 0 1884 D 116 0 1901 0 2.07e-57 232 100.00
167 0 2508 D 167 0 2525 0 4.08e-88 334 100.00
117 0 2760 D 117 0 2777 0 5.17e-58 234 100.00
128 0 1077 D 128 0 1094 0 1.23e-64 256 100.00
183 0 1623 D 183 0 1640 0 9.50e-98 366 100.00
117 0 393 D 117 0 5471259 0 5.17e-58 234 100.00
117 0 3244 D 117 0 3261 0 5.17e-58 234 100.00
128 0 3622 D 128 0 3639 0 1.23e-64 256 100.00
165 0 64 D 165 0 5470913 0 6.53e-87 330 100.00
173 0 3763 D 173 0 3780 0 9.96e-92 346 100.00
164 0 3937 D 164 0 3954 0 2.61e-86 328 100.00
134 0 4201 D 134 0 4218 0 3.01e-68 268 100.00

The first program call (following the prompt $) delivers the highest scoring global chain of length
12 with score 3514.

$ chain2dim -global ecolicmp.vm
chain 0: length 12 score 3514

165 0 64 D 165 0 64 0 6.53e-87 330 100.00
165 0 393 D 165 0 410 0 6.53e-87 330 100.00
128 0 1077 D 128 0 1094 0 1.23e-64 256 100.00
183 0 1623 D 183 0 1640 0 9.50e-98 366 100.00
116 0 1884 D 116 0 1901 0 2.07e-57 232 100.00
167 0 2508 D 167 0 2525 0 4.08e-88 334 100.00
117 0 2760 D 117 0 2777 0 5.17e-58 234 100.00
117 0 3244 D 117 0 3261 0 5.17e-58 234 100.00
128 0 3622 D 128 0 3639 0 1.23e-64 256 100.00
173 0 3763 D 173 0 3780 0 9.96e-92 346 100.00
164 0 3937 D 164 0 3954 0 2.61e-86 328 100.00
134 0 4201 D 134 0 4218 0 3.01e-68 268 100.00

Note that only two matches (where the second instances of the match are at large positions) are
missing in the global chain. The matches making up the chain are reported in order of their
start positions. Because it is a chain, this is consistent in both sequences. Note that the original
comment line from the matchfile is echoed in the output. This allows to use the output file for
the program Genalyzer or other programs from the Vmatch-software suite.

Now suppose we have the original input in simple format file ecolicmp.of:

$ cat ecolicmp.of
args=-l 50 -q EcoliO157H7 EcoliK12

64 228 64 228 330
393 557 410 574 330
1884 1999 1901 2016 232
2508 2674 2525 2691 334

4

2760 2876 2777 2893 234
1077 1204 1094 1221 256
1623 1805 1640 1822 366
393 509 5471259 5471375 234
3244 3360 3261 3377 234
3622 3749 3639 3766 256

64 228 5470913 5471077 330
3763 3935 3780 3952 346
3937 4100 3954 4117 328
4201 4334 4218 4351 268

The following program call delivers the same chain as above, but with a different score, due to
the additional gap penalties (switched on by the argument gc for option -global. Because, we
use option -silent, the chain is not reported:

$ chain2dim -silent -global gc ecolicmp.of
chain 0: length 12 score -5468705

Now lets turn to local chains. The simplest call reports the optimal local chain:

$ chain2dim -local ecolicmp.of
chain 0: length 4 score 964
3622 3749 3639 3766 256
3763 3935 3780 3952 346
3937 4100 3954 4117 328
4201 4334 4218 4351 268

Using a weight factor 1.8, the optimal local chain extends to the left by three matches:

$ chain2dim -wf 1.8 -local ecolicmp.of
chain 0: length 7 score 1931
2508 2674 2525 2691 601
2760 2876 2777 2893 421
3244 3360 3261 3377 421
3622 3749 3639 3766 460
3763 3935 3780 3952 622
3937 4100 3954 4117 590
4201 4334 4218 4351 482

Using a weight factor 0.5, the last match is separated from the optimal local chain which was
computed with the default weight factor 1.0:

$ chain2dim -wf 0.5 -local ecolicmp.of
chain 0: length 3 score 433
3622 3749 3639 3766 128
3763 3935 3780 3952 173
3937 4100 3954 4117 164

5

Alternatively, we can specify a maximum gap value to cut chains. For example the following
only outputs a chain with maximum gap 20. As a consequence the last fragment 4201 4334
4218 4351 268 which has distance 100 to the previous fragment.

$ chain2dim -local -maxgap 20 ecolicmp.of
chain 0: length 3 score 898
3622 3749 3639 3766 256
3763 3935 3780 3952 346
3937 4100 3954 4117 328

To obtain different local chains with some minimum score we add an extra argument to the option
-local. For example, to obtain the chains with the two largest scores, we use the argument 2b.
In addition we use option -v, which reports the different steps of the computation.

$ chain2dim -local 2b -v ecolicmp.of
match file "ecolicmp.of" (open format) read
compute chain scores
retrieve optimal chains
compute optimal local chains with score >= 440
chain 0: length 2 score 440
1623 1805 1640 1822 366
1884 1999 1901 2016 232
chain 1: length 4 score 964
3622 3749 3639 3766 256
3763 3935 3780 3952 346
3937 4100 3954 4117 328
4201 4334 4218 4351 268
overall space peak: main=0.10 MB

The same chains are computed if we use the arguments 440 or 55p to the option -local.

$ chain2dim -local 55p -silent ecolicmp.of
chain 0: length 2 score 440
chain 1: length 4 score 964

6

