sequenza usage example

Francesco Favero} Tejal Joshi, Andrea M. Marquard, Aron C. Eklund
October 8, 2015

Contents

I —Abstractl 2

2 Getting started| 2
2.1 Minimum requirements|. 2
2.2 Installation| oL oo 2
[2.3 Note on the helper program sequenza-utils.py.|. 2

1OW| .« v o e e e e 2

[3 Preparing inputs for Sequenzal 3
[3.1 _Generating pileup files from BAM files| 3
3.2 enerating a genome-wide content file[. 3
3.3 enerate aseqz file[. 4
8.4 Converting VarScan2 output toseqz| 4

[4 _Exploring the seqz file and depth ratio normalization details| 4
T Readthe segz file]. 5
4.2 Quality control] o oo 5
4.3 Normalization of depth ratio] 6

|5 Analyzing sequencing data with sequenzal 7
[F-T Extract the information from the seqz file]. 7

p.1.1 Plot chromosome view with mutations, BAF, depth ratio |

L and segments|o 8
|5.2 Inference of cellularity and ploidy|. 9
5.3 esults of model fittingl 000 9

5.3.1 Confidence intervals, confidence region and point estimate] 9

p.4 Call CNVs and mutations using the estimated parameters| 12
[5.4.1 Detect variant alleles (mutations). 12
|5_.4.2 Detect copy number variations| 13

5.5 isualize detected copy number changes and variant alleles] . . . 14
5.5.1 Genome-wide view of the allele and copy number state|. . 16

*favero@cbs.dtu.dk

1 Abstract

Deep sequence of tumor DNA along with corresponding normal DNA can pro-
vide a valuable perspective on the mutations and aberrations that characterize
the tumor. However, analysis of this data can be impeded by tumor cellularity
and heterogeneity and by unwieldy data. Here we describe Sequenza, which
comprises a fast python-based pre-processor and an R-based analysis package.
Sequenza enables the efficient estimation of tumor cellularity and ploidy, and
generation of copy number, loss-of-heterozygosity, and mutation frequency pro-
files.

This document details a typical analysis of matched tumor-normal exome
sequence data using sequenza.

2 Getting started

2.1 Minimum requirements
e Software: R, Python
e Operating system: Linux, OS X, Windows
e Memory: Minimum 4 GB of RAM. Recommended >8 GB.
e Disk space: 1.5 GB for sample
e R version: 2.15.1

e Python version: 2.7 (or Pypy 2.%)

2.2 Installation

In order to install sequenza, you can download the package from the nearest
CRAN miirror doing;:

> install.packages("sequenza')

2.3 Note on the helper program sequenza-utils.py.

For convenience and efficiency we have implemented pre-processing algorithms
in a standalone (not called from R) Python program. This program is provided
with the R package; its exact location can be found like this:

> system.file("exec", "sequenza-utils.py", package="sequenza")

You may wish to copy this program to a location on your path.

2.4 Workflow overview

A typical workflow developed with Sequenza on pre-aligned sequencing files
(BAM format) is structured as follows:

1. Convert pileup to seqz format

2. Normalization of depth ratio

3. Allele-specific segmentation using the depth ratio and the B allele frequen-
cies (BAFs)

4. Infer cellularity and ploidy by model fitting
5. Call CNV and variant alleles

3 Preparing inputs for Sequenza

In order to obtain precise mutational and aberration patterns in a tumor sample,
Sequenza requires a matched normal sample from the same patient. Typically,
the following files are needed to get started with Sequenza.

1. A BAM file (or a derived pileup file) from the tumor specimen.
2. A BAM file (or a derived pileup file) from the normal specimen.

3. A FASTA reference genomic sequence file (to extract GC-content infor-
mation, and to transform BAM to pileup if needed.)

Alternatively, it is possible to use the output of VarScan2[I] (http://varscan.
sourceforge.net)), which requires a similar approach and the generation of pile-
ups as well. In this case, you can skip ahead to the “Converting VarScan2 output
to seqz” section below.

The genome sequence file can be obtained from e.g. http://hgdownload.
cse.ucsc.edu/downloads.htmljor http://www.ensembl.org/info/data/ftp/
index.html.

3.1 Generating pileup files from BAM files

We recommend using pre-processed and quality-filtered BAM files to obtain
pileup calls for both samples.
Pileup files can be generated using samtools[2]. For example:

1 samtools mpileup —f hgl9.fasta —Q 20 normal.bam | gzip > normal.pileup.gz
2 samtools mpileup —f hgl9.fasta —Q 20 tumor.bam | gzip > tumor.pileup.gz

3.2 Generating a genome-wide GC content file

The genome-wide GC content is used to normalize the depth ratio. To obtain

the GC content file, you can use a function from sequenza-utils.py to extract

the average GC content from a genome FASTA file using fixed genomic windows.
The following example calculates GC content in 50-base windows:

1 sequenza—utils.py GC—windows —w 50 hgl9.fa | gzip > hgl9.gc50Base.txt.gz

Alternatively, you can download the gchBase file from golden path (http:
//hgdownload-test.cse.ucsc.edu/goldenPath/hgl9/gc5Base/).

http://varscan.sourceforge.net
http://varscan.sourceforge.net
http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html
http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/gc5Base/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/gc5Base/

3.3 Generate a seqz file

A seqz file contains genotype information, alleles and mutation frequency, and
other features. This file is used as input for the R-based part of Sequenza.
The seqz file is generated like this:

1 sequenza—utils.py pileup2seqz —gc hgl9.gc50Base.txt.gz \
2 —n normal.pileup.gz \
3 —t tumor.pileup.gz | gzip > out.seqz.gz

Alternatively, if you haven’t already generated the pileup files, and you are
not interested in storing the pileup for further use, you can use the function
bam2seqz which generates two temporary named pipes (FIFOs) converting on
the fly to pileup using samtools without storing the pileup file:

1 sequenza—utils.py bam2seqz —gc hgl9.gc50Base.txt.gz
2 ——fasta hgl9.fasta \

3 —n normal.fifo \

4 —t tumor.fifo | gzip > out.seqz.gz

To reduce the size of the seqz file, we recommend the use of a binning
function provided in sequenza-utils.py. This binning decreases the memory
requirement to load the data into R, and it also speeds up the processing of the
sample:

1 sequenza—utils.py seqz—binning —w 50 \
2 —s out.seqz.gz | gzip > out_small.seqz.gz

Where the parameter -w indicate a window size (in bases), to be used for
the binning. This binning has only a negligible effect on Sequenza output. The
heterozygous positions and the positions carrying variant calls are not affected
by binning.

3.4 Converting VarScan2 output to seqz

Since many projects might already have been processed with VarScan2, it can
be convenient to be able to import such results. For this purpose a simple
function is provided within the package, to convert the output of the somatic
and copynumber programs of the VarScan2 suite into the seqz format.

> snp <- read.table("varscan.snp", header = TRUE, sep = "\t")

> cnv <- read.table("varscan.copynumber", header = TRUE, sep = "\t")

> seqz.data <- VarScan2seqz(varscan.somatic = snp, varscan.copynumber = cnv)

> write.table(seqz.data, "my.sample.seqz", col.names = TRUE, row.names = FALSE, sep = "\t"

For whole genome sequencing, the information in the wvarscan.snp could be
sufficient to estimate the ploidy and cellularity, and define the copy number pro-
file and mutations; hence the varscan. copynumber argument is optional. How-
ever, for ezome sequencing, we recommend that you supply varscan. copynumber.

4 Exploring the seqz file and depth ratio nor-
malization details

After the aligned sequence data have been pre-processed, the sequenza R pack-
age handles all the normalization and analysis steps. Thus, the remainder of

this vignette will take place in R.

> library("sequenza')

4.1 Read the seqz file
In the package we provide an example file. To find the complete path of the

example data file:

> data.file <- system.file("data", "example.seqz.txt.gz", package

> data.file

The seqz file can be read all at once, but processing one chromosome at a
time is less demanding on computational resources, especially while processing
whole genome data, and might be preferable in case of limited computational

resources.

Read only the data corresponding to chromosome 1:

> seqz.data <- read.seqz(data.file, chr.name = "1")

Alternatively, read all data at once:

> seqz.data <- read.seqz(data.file)

> str(seqz.data, vec.len = 2)

'data.frame': 53937 obs. of 14 variables:

$ chromosome : chr "1t oMo

$ position : int 866168 878255 880150 881992 884173 ...
$ base.ref : chr "C" "T"

$ depth.normal : int 7 21 9 53 80 ...

$ depth.tumor : int 10 10 16 37 61 ...

$ depth.ratio : num 1.429 0.476 ...

$ Af :num 0.9 0.9 0.9 0.514 0.586 ...
$ Bf :num 0 0 0 0.486 0.397 ...

$ zygosity.normal: chr "hom" "hom" ...

$ GC.percent : num 66 72 54 63 64 ...

$ good.reads : num 10 10 10 35 58 ...

$ AB.normal : chr "C" "T" ...

$ AB.tumor : chr "AO.1" "GO.1"

$ tumor.strand : chr "A1.0" "G1.0"

The files can be read even faster; after mapping the chromosomes location
in the file, it is possible to select the specific lines of the file to read. See the
man page of read.seqz for an example.

4.2 Quality control

Each aligned base, in the next generation sequencing, is associated with a quality
score. The sequenza-utils.py software is capable of filtering out bases with a
quality score lower then a specified value (default, 20). The number of reads that
have passed the filter is returned in the column good.reads, while the depth.tumor
column contains the raw depth indicated in the pileup.

"sequenza")

4.3 Normalization of depth ratio

The GC content bias affects most of the samples; however, some samples are
more biased than others. We attempt to remove this bias by normalizing with
the mean depth ratio value of a corresponding GC content value.

For efficiency, the function gc.sample.stats simultaneously gathers GC-
content information from the entire file and in the meantime maps the chromo-
some position in the file (thus enabling direct access to a specified chromosome
later, see 7read.seqz):

> gc.stats <- gc.sample.stats(data.file)
> str(gc.stats)

List of 6
$ raw : num [1:70, 1:3] 0.556 0.834 0.894 0.445 0.714 ...
..— attr(x, "dimnames")=List of 2
.$: chr [1:70] "15" "1e" "17" "18"
.. ..$: chr [1:3] "25%" "5O%" "75%"
$ adj : num [1:70, 1:3] 1 0.75 0.921 0.772 0.857 ...
..— attr(*, "dimnames")=List of 2
..$: chr [1:70] "15" "16" "17" "18"
..$ ¢ chr [1:3] "25%" "50%" "75%"
$ gc.values : num [1:70] 15 16 17 18 19 20 21 22 23 24 ...
$ raw.mean : Named num [1:70] 0.556 0.926 0.93 0.523 0.96 ...
..— attr(*, "names")= chr [1:70] "15" "16" "17" "18"
$ raw.median : Named num [1:70] 0.556 1.111 0.971 0.576 0.833 ...
..- attr(*, "names")= chr [1:70] "15" "16" "17" "1g"
$ file.metrics:'data.frame': 23 obs. of 4 variables:

..$ chr : Factor w/ 23 levels "1","10","11",..: 1 12 16 17 18 19 20 21 22 2 ...

..$ n.lines: int [1:23] 5817 3377 2957 2179 1976 2756 2765 1837 2488 2673 ...
..$ start : num [1:23] 1 5818 9195 12152 14331
..$ end : num [1:23] 5817 9194 12151 14330 16306 ...

Or alternatively, it is possible to collect the GC-contents information from
an object already loaded in the environment.

> gc.stats <- gc.norm(x = seqz.data$depth.ratio,
+ gc = seqz.data$GC.percent)

In either case the the normalization of the depth ratio is performed in the
following way:

> gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
> seqz.data$adjusted.ratio <- seqz.data$depth.ratio /
+ gc.vect [as. character(seqz.data$GC.percent)]

par (mfrow = c(1,2), cex = 1, las = 1, bty = '1')
matplot (gc.stats$gc.values, gc.stats$raw,
type = 'b', col =1, pch = c(1, 19, 1), 1ty = c(2, 1, 2),
xlab 'GC content (})', ylab = 'Uncorrected depth ratio')
legend('topright', legend = colnames(gc.stats$raw), pch = c(1, 19, 1))
hist2(seqz.data$depth.ratio, seqz.data$adjusted.ratio,
breaks = prettyLog, key = vkey, panel.first = abline(0, 1, 1ty = 2),
xlab = 'Uncorrected depth ratio', ylab = 'GC-adjusted depth ratio')

+ + VV+ + VvV

25 o 280 15
. 5% o Ly
_% 20 4 o 753:% E) []
s < .J Counts
= ! 2 10 , 30000
2 " = . 10000
3 15 . 3000
o 1%}
g L oo codes 5 300
g 1.0 F;‘,‘f’%‘b“’u Py y) "\ g 51 10
S > o L ol% 0
}E\f ~ 'ﬁ~\“?¥. o = 10
0.5 | & 3 AR 0 1
T T T T T T 07 T T T
20 30 40 50 60 70 80 0 5 10 15
GC content (%) Uncorrected depth ratio

Figure 1: Visualization of depth.ratio bias in relation of GC content (left), and
resulting normalization effect (right).

5 Analyzing sequencing data with sequenza

The R package sequenza offers an ensemble of functions and models that can
be used to design customized workflows and analyses. Here we provide generic
and most commonly used analysis steps.

e Extract the relevant information from the raw seqz file.
e Fit the sequenza model to infer cellularity and ploidy.

e Apply the inferred parameters to estimate the copy number profile

5.1 Extract the information from the seqz file.

The function sequenza.extract is designed to efficiently access the seqz file
and take care of normalization steps. The arguments enable customization of a
set of actions listed below:

e binning depth ratio and B allele frequency in a desired window size (al-
lowing a desired number of overlapping windows);

e performing a fast, allele specific segmentation using the copynumber package[3];

e filter mutations by frequency and noise.

> test <- sequenza.extract(data.file)
> names (test)

After the raw data is processed, the size of the data is considerably reduced.
Typically, the R object resulting from sequenza.extract can be stored as a file
of a few megabytes, even for whole genome sequencing data.

The result of this first step consists of a list of sub-lists. Each sub-list has
information subdivided by chromosome. All lists share the same chromosome
order.

5.1.1 Plot chromosome view with mutations, BAF, depth ratio and
segments

Each chromosome can be visualized using the function chromosome.view as
in Figure 2] The same function can be used to visualize the data after the
estimation of cellularity and ploidy parameters as in Figure

> chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]],

+ ratio.windows = test$ratio[[1]], min.N.ratio = 1,
+ segments = test$segments[[1]], main = test$chromosomes[1])
1
1.0
>
2 08
3 A>C, T>G
8 06 o A>G, T>C
= > AST, T>A
3z ° o » C>A, G>T
f 0.4 L © ® C>G,G>C
g C>T, G>A
3 024 ° °
=] 9 ® @ 8
0.0
0.5 - 2. e

oy Y Tl rig i ‘e
§ = —.3-9;*)
03 I ‘e d o
8 N !
2 02 . 1
: ' %

01 e

‘ - 3o

00 -

25 -

2.0 il I
. | | sl
° i Al
g 15 N Y] Il
£ Bt T -

10 1 Metagilre o] =
8 o I R N s L LB

>
05 - b ool
.

rTrTrrTr T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240

Position (Mb)

Figure 2: Plots of mutant allele frequency (top), B allele frequency (middle)
and depth ratio (bottom) vs. chromosome position.

5.2 Inference of cellularity and ploidy

After the raw data is processed, imported into R, and normalized, we can ap-
ply the parameter inference implemented in the package. The function se-
quenza.fit performs the inference using the calculated B allele frequency and
depth ratio of the obtained segments. The method can be explored in more
detail by reading the manual pages for the function baf .model.fit.

> CP.example <- sequenza.fit(test)

The result is a list in a format list(ploidy, collularity, lpp), corresponding
to the conventional format list(z, y, z), easily usable by standard graphical
functions, such as image. However we provide functions to explore and better
display the results, and to extract the point estimate and confidence intervals.

5.3 Results of model fitting

The last part of the workflow is to apply the estimated parameters. There is an
all-in-one function that plots and saves the results, giving control on file names
and output directory:

> sequenza.results(sequenza.extract = test, cp.table = CP.example,
+ sample.id = "Test", out.dir="TEST")

Although this standard way of presenting the result is appropriate for most
situations, it is possible to create an alternative wrapper by using functions in
the following sub-sections.

5.3.1 Confidence intervals, confidence region and point estimate

The object resulting from sequenza.fit has two vectors, ploidy and cellular-
ity, indicating respectively the tested values of ploidy and cellularity, and a
matrix, Ipp, with columns and rows corresponding to the previously indicated
vectors, containing the estimated log posterior probability for the combinations
of cellularity and ploidy. Confidence intervals for these two parameters can be
calculated using the function get.ci.

> cint <- get.ci(CP.example)

It is also possible to plot the posterior probability over the combinations of
the two parameters, highlighting the point estimate and the confidence region.

> cp.plot(CP.example)
> cp.plot.contours(CP.example, add = TRUE, likThresh = c(0.95))

1.0 H
@®
0.8 — e
+
2 06
8
=
©
(@]
0.4 —
02 4 C.R. 95%
) + Point estimate
+ Alternative solutions
T T T T T T T
1 2 3 4 5 6 7
Scaled rank LPP
Ploidy
0.0 0.5 1.0

Figure 3: Result from the inference over the defined range of cellularity and
ploidy. Color intensity indicates the log posterior probability of corresponding
cellularity /ploidy values.

By exploring the results for cellularity and ploidy separately, it is possible to

draw the posterior probability distribution for each parameter. The information
is returned by the get.ci function.

10

par (mfrow = ¢(2,2))
cp.plot (CP.example)
cp.plot.contours(CP.example, add = TRUE)
plot(cint$values.cellularity, ylab = "Cellularity",
xlab = "posterior probability", type = "n")
select <- cint$confint.cellularity[1] <= cint$values.cellularity[,2] &
cint$values.cellularity[,2] <= cint$confint.cellularity[2]
polygon(y = c(cint$confint.cellularity[1], cint$values.cellularity[select, 2], cint$conf
x = c(0, cint$values.cellularity[select, 1], 0), col='red', border=NA)
lines(cint$values.cellularity)
abline(h = cint$max.cellularity, lty = 2, lwd = 0.5)
plot(cint$values.ploidy, xlab = "Ploidy",
ylab = "posterior probability", type = "n")
select <- cint$confint.ploidy[1] <= cint$values.ploidy[,1] &
cint$values.ploidy[,1] <= cint$confint.ploidy[2]
polygon(x = c(cint$confint.ploidy[1], cint$values.ploidyl[select, 1], cint$confint.ploidy
y = ¢(0, cint$values.ploidyl[select, 2], 0), col='red', border=NA)
lines(cint$values.ploidy)
abline(v = cint$max.ploidy, 1ty = 2, lwd = 0.5)

VVV+V+V +VVYV +YV +YV + VYV VYV

1.0 S
—
*
0.8 + .
2 =7 2
= = ©
© [+ T -
s R
8 o4 — CR.95% 8 .
+ Point estimate ~
0.2 + Alternative solutions o 7
T T T T T T 1 T T T T 1
1 2 3 4 5 6 7 0.0 0.2 0.4 0.6
Scaled rank LPP
Ploidy posterior probability
0.0 0.5 1.0
@ _
z °
3 <9 |
[o
S
S
= o 7
i<l
g N |
D o
=]
2 o
S -

Ploidy

Figure 4: Plot of the log posterior probability with respective cellularity and
ploidy probability distribution and confidence intervals.

11

5.4 Call CNVs and mutations using the estimated param-
eters

The point estimate value corresponds to the point of maximum posterior prob-
ability, detected after the confidence interval computation:

> cellularity <- cint$max.cellularity
> cellularity

[1] 0.88

> ploidy <- cint$max.ploidy
> ploidy

(11 2

In addition we need to calculate the average normalized depth ratio, used to set
a value for the baseline copy number.

> avg.depth.ratio <- mean(testgcadjl, 2])
> avg.depth.ratio

(11 1

5.4.1 Detect variant alleles (mutations)

To detect variant alleles, we use a mutation frequency model that is implemented
as the mufreq.bayes function:

> mut.tab <- na.exclude(do.call(rbind, test$mutations))

> mut.alleles <- mufreq.bayes (mufreq = mut.tab$F,

+ depth.ratio = mut.tab$adjusted.ratio,

+ cellularity = cellularity, ploidy = ploidy,
+ avg.depth.ratio = avg.depth.ratio)

> head(mut.alleles)

CNn CNt Mt LPP
4 2 2 1 -19.027095
3 2 2 0 -27.644729
41 2 2 1 -27.612002
42 2 2 1 -9.104826
31 2 2 0 -27.644729
32 2 2 0 -25.053339

> head(cbind(mut.tab/[,c("chromosome", "position", "F", "adjusted.ratio", "mutation")],

+ mut.alleles))

chromosome position F adjusted.ratio mutation CNn
1.364 1 10436585 0.215 0.9956093 c>T 2
1.386 1 11140488 0.122 0.9956093 ASG 2
1.510 1 12888791 0.154 0.9956093 ASG 2
1.652 1 15821826 0.389 0.9956093 G>T 2
1.795 1 16890737 0.115 0.9956093 C>A 2

12

1.797

.364
.386
.510
.652
.795
LT97

N

CNt Mt

-1
-2
-2
-2
-2

NNDNDDNDDN
O O - = O =

1 16890771
LPP
9.027095
7.644729
7.612002
9.104826
7.644729
5.053339

0.109

0.9956093

The result consists of four values for every imputed mutation: CNn is the
provided copy number of the normal sample at the given position (default = 2);
CNt is the estimated copy number of the tumor at the given position; Mt is the
estimated numbers of alleles carrying the mutation; LPP is the log posterior
probability of the model fit.

5.4.2 Detect copy number variations

To detect copy number variations we use the model implemented in the function

baf .bayes, with the estimated parameters of cellularity and ploidy:

<- na.exclude(do.call(rbind, test$segments))
cn.alleles <- baf.bayes(Bf = seg.tab$Bf, depth.ratio

seg.tab$depth.ratio,

cellularity = cellularity, ploidy = ploidy,
avg.depth.ratio = avg.depth.ratio)

end.pos
54694219
60223464
67890614
92445264
18165373
21485317
N.ratio
2172

101

114

340

431

Bf N.
0.41541244 1
0.33497406
0.05069544
0.43610321
0.33914750
0.39920977
sd.ratio CNt
.4740886
.2831951
.4353959
.3944810
.8945203

> seg.tab
>
+
+
> head(cn.alleles)

CNt A B LPP
[1,] 211 -4.936585
[2,] 3 21 -4.948793
[3,] 220 -4.940939
[4,] 4 2 2 -4.983545
[5,] 321 -4.934301
[6,1] 21 1 -4.940406
> seg.tab <- cbind(seg.tab, cn.alleles)
> head(seg.tab)

chromosome start.pos
1.1 1 881992
1.2 1 54700724
1.3 1 60381518
1.4 1 68151686
1.5 1 92568300 1
1.6 1 118165645 1

sd.BAF depth.ratio

1.1 0.09201794 0.9956093
1.2 0.08018359 1.3446988
1.3 0.03415662 1.0308753
1.4 0.07216107 1.8196474
1.5 0.08239187 1.4479710
1.6 0.08833140 1.0366847

85

13

O O O+ O
N Wb N WwN

.4214107

BAF
636
73
94
265
314

R NNNDNDRP >
= =, NO PP

LPP
-4.936585
-4.948793
-4.940939
.9835645
-4.934301
-4.940406

e
O WN -
|
RS

The result consists of four values for every imputed segment: CNt is the es-
timated copy number of the tumor of the given segment; A is the estimated
number of A alleles; B is the estimated number of B alleles; LPP is the log
posterior probability of the model fit.

5.5 Visualize detected copy number changes and variant
alleles

To visualize the data after detection of CNV and variant alleles, one can use the
chromosome.view. In order to draw the relative model points (and to evaluate
how the estimated model fits the real data) additional information is needed
beyond that in Figure

e Each segment must have the columns relative to the copy number variation
calling.

o (Cellularity and ploidy estimates.

e Average normalized depth ratio.

14

> chromosome.view(mut.tab = test$mutations[[3]], baf.windows = test$BAF[[3]],

+ ratio.windows = test$ratio[[3]], min.N.ratio = 1,

+ segments = seg.tabl[seg.tab$chromosome == test$chromosomes[3],],
+ main = test$chromosomes[3],

+ cellularity = cellularity, ploidy = ploidy,

+ avg.depth.ratio = avg.depth.ratio)

3
1.0

R I RURRE T PR TR EPP
g 08 eeeee. S U
s A>C, T>G
S o064 A>G, T>C
= » AST, T>A
S -6 » C>A, G>T
s 0419 ® C>G,G>C
s T C>T, G>A
3 02
s
>
3
2
[
]
s
L
E
°
@
o

-5

La
2 g
8 L3 €
< 2
< >
g F2 &
e 3

F1

- o

90 110

Position (Mb)

130

150

170 190

Figure 5: Plots of mutant allele frequency (top), B allele frequency (middle) and
depth ratio (bottom) for chromosome position. Horizontal dotted lines indicate

expectation values for various copy number/allele states.

15

5.5.1 Genome-wide view of the allele and copy number state

> genome.view(seg.cn = seg.tab, info.type = "CNt")
> legend("bottomright", bty="n", c("Tumor copy number"),col = c("red"),
+ inset = c¢(0, -0.4), pch=15, xpd = TRUE)

1 2 3 4 5 6 7 8 9 101112 1314151617182@22X
t 1

_ 4 = O

(]

o

c 3= . wan . P xom 3 . Ve

S

c

a 2 —fm m wm——aEiEm m i mamiis m g m CRLL U BT RO T |

3

1 - wi siim — e w—— 1w P e e i e s
= Tumor copy number
1 201

Position (Mb)

Figure 6: Genome-wide absolute copy number profile obtained from exome se-
quencing.

> genome.view(seg.cn = seg.tab, info.type = "AB")
> legend("bottomright", bty = "n", c("A-allele","B-allele"), col= c("red",
+ inset = ¢(0, -0.45), pch = 15, xpd = TRUE)

= 3 '

[}

=)

g 2 - LI} -] 1 Il = - [] [- =

S b e, Sm—— re s e g ez & i b g

a N R | . - I I W w. - -

S

0 1. mi mimm 0 e e) f emmw s w8 e | ma
= A-allele
m B-allele
1 201

Position (Mb)

Figure 7: Genome-wide allele-specific copy number profile obtained from exome
sequencing.

References

[1] Daniel C Koboldt, Qunyuan Zhang, David E Larson, Dong Shen, Michael D
McLellan, Ling Lin, Christopher A Miller, Elaine R Mardis, Li Ding, and
Richard K Wilson. VarScan 2: somatic mutation and copy number alteration

discovery in cancer by exome sequencing. Genome Research, 22(3):568-76,
March 2012.

[2] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, and Richard Durbin. The Sequence

16

”blue”) ,

Alignment/Map format and SAMtools. Bioinformatics (Ozxford, England),
25(16):2078-9, August 2009.

Gro Nilsen, Knut Liestg 1, Peter Van Loo, Hans Kristian Moen Vollan, Mar-
ianne B Eide, Oscar M Rueda, Suet-Feung Chin, Roslin Russell, Lars O
Baumbusch, Carlos Caldas, Anne-Lise B¢ rresen Dale, and Ole Christian
Lingjaerde. Copynumber: Efficient algorithms for single- and multi-track
copy number segmentation. BMC Genomics, 13:591, January 2012.

17

	Abstract
	Getting started
	Minimum requirements
	Installation
	Note on the helper program sequenza-utils.py.
	Workflow overview

	Preparing inputs for Sequenza
	Generating pileup files from BAM files
	Generating a genome-wide GC content file
	Generate a seqz file
	Converting VarScan2 output to seqz

	Exploring the seqz file and depth ratio normalization details
	Read the seqz file
	Quality control
	Normalization of depth ratio

	Analyzing sequencing data with sequenza
	Extract the information from the seqz file.
	Plot chromosome view with mutations, BAF, depth ratio and segments

	Inference of cellularity and ploidy
	Results of model fitting
	Confidence intervals, confidence region and point estimate

	Call CNVs and mutations using the estimated parameters
	Detect variant alleles (mutations)
	Detect copy number variations

	Visualize detected copy number changes and variant alleles
	Genome-wide view of the allele and copy number state

