basic_theme |
A generic basic theme for time courses. It extends ggplot2 theme_classic(). |
check_exp_dataset |
Check that the experimental data set exists. |
combine_param_best_fits_stats |
Combine the parameter best fits statistics. |
combine_param_ple_stats |
Combine the parameter PLE statistics. |
compute_aic |
Compute the Akaike Information Criterion. Assuming additive Gaussian measurement noise of width 1, the term -2ln(L(theta|y)) ~ SSR ~ Chi^2 |
compute_aicc |
Compute the corrected Akaike Information Criterion. Assuming additive Gaussian measurement noise of width 1, the term -2ln(L(theta|y)) ~ SSR ~ Chi^2 |
compute_bic |
Compute the Bayesian Information Criterion. Assuming additive Gaussian measurement noise of width 1, the term -2ln(L(theta|y)) ~ SSR ~ Chi^2 |
compute_cl_objval |
Compute the confidence level based on the minimum objective value. |
compute_fratio_threshold |
Compute the fratio threshold for the confidence level. |
compute_sampled_ple_stats |
Compute the table for the sampled PLE statistics. |
gen_stats_table |
Generate a table of statistics for each model readout. |
get_param_names |
Get parameter names |
get_sorted_level_indexes |
Return the indexes of the files as sorted by levels. |
histogramplot |
Plot a generic histogram |
insulin_receptor_1 |
A stochastic model simulation |
insulin_receptor_2 |
A stochastic model simulation |
insulin_receptor_3 |
A stochastic model simulation |
insulin_receptor_all_fits |
A parameter estimation data set including all the evaluated fits. |
insulin_receptor_best_fits |
A parameter estimation data set including only the best evaluated fits. |
insulin_receptor_exp_dataset |
Experimental data set for the insulin receptor beta phosphorylated at pY1146 as published in Dalle Pezze et al. Science Signaling 2012. |
insulin_receptor_IR_beta_pY1146 |
A stochastic simulation data set for the insulin receptor beta phosphorylated at pY1146. |
insulin_receptor_ps1_l0 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 0. |
insulin_receptor_ps1_l1 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 1. |
insulin_receptor_ps1_l11 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 11. |
insulin_receptor_ps1_l13 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 13. |
insulin_receptor_ps1_l14 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 14. |
insulin_receptor_ps1_l16 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 16. |
insulin_receptor_ps1_l3 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 3. |
insulin_receptor_ps1_l4 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 4. |
insulin_receptor_ps1_l6 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 6. |
insulin_receptor_ps1_l8 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 8. |
insulin_receptor_ps1_l9 |
A deterministic simulation of the insulin receptor model upon scanning of 1 model parameter. The initial amount of IR-beta is approx 9. |
insulin_receptor_ps2_tp2 |
A deterministic simulation of the insulin receptor model upon scanning of 2 model parameters. |
kurtosis |
Calculate the kurtosis of a numeric vector |
leftCI |
Return the left value of the parameter confidence interval. The provided dataset has two columns: ObjVal | ParamValue |
load_exp_dataset |
Load the experimental data set. |
normalise_vec |
Normalise a vector within 0 and 1 |
objval.col |
The name of the Objective Value column |
objval_vs_iters_analysis |
Analysis of the Objective values vs Iterations. |
parameter_density_analysis |
Parameter density analysis. |
parameter_pca_analysis |
PCA for the parameters. These plots rely on factoextra fviz functions. |
pca_theme |
A generic basic theme for pca. It extends ggplot2 theme_classic(). |
pe_ds_preproc |
Parameter estimation pre-processing. It renames the data set columns, and applies a log10 transformation if logspace is TRUE. If all.fits is true, it also computes the confidence levels. |
plot_combined_tc |
Plot repeated time courses in the same plot with mean, 1 standard deviation, and 95% confidence intervals. |
plot_comb_sims |
Plot the simulation time courses using a heatmap representation. |
plot_double_param_scan_data |
Plot model double parameter scan time courses. |
plot_fits |
Plot the number of iterations vs objective values in log10 scale. |
plot_heatmap_tc |
Plot time courses organised as data frame columns with a heatmap. |
plot_objval_vs_iters |
Plot the Objective values vs Iterations |
plot_parameter_density |
Plot parameter density. |
plot_raw_dataset |
Add experimental data points to a plot. The length of the experimental time course to plot is limited by the length of the simulated time course (=max_sim_tp). |
plot_repeated_tc |
Plot repeated time courses in the same plot separately. First column is Time. |
plot_sampled_2d_ple |
Plot 2D profile likelihood estimations. |
plot_sampled_ple |
Plot the sampled profile likelihood estimations (PLE). The table is made of two columns: ObjVal | Parameter |
plot_sep_sims |
Plot the simulations time course separately. |
plot_single_param_scan_data |
Plot model single parameter scan time courses |
plot_single_param_scan_data_homogen |
Plot model single parameter scan time courses using homogeneous lines. |
replace_colnames |
Rename data frame columns. 'ObjectiveValue' is renamed as 'ObjVal'. Substrings 'Values.' and '..InitialValue' are removed. |
rightCI |
Return the right value of the parameter confidence interval. The provided dataset has two columns: ObjVal | ParamValue |
sampled_2d_ple_analysis |
2D profile likelihood estimation analysis. |
sampled_ple_analysis |
Run the profile likelihood estimation analysis. |
sbpiper_pe |
Main R function for SBpipe pipeline: parameter_estimation(). |
sbpiper_ps1 |
Main R function for SBpipe pipeline: parameter_scan1(). |
sbpiper_ps2 |
Main R function for SBpipe pipeline: parameter_scan2(). |
sbpiper_sim |
Main R function for SBpipe pipeline: simulate(). |
scatterplot |
Plot a generic scatter plot |
scatterplot_log10 |
Plot a generic scatter plot in log10 scale |
scatterplot_ple |
Plot a profile likelihood estimation (PLE) scatter plot |
scatterplot_w_colour |
Plot a scatter plot using a coloured palette |
skewness |
Calculate the skewness of a numeric vector |
summarise_data |
Summarise the model simulation repeats in a single file. |
tc_theme |
A theme for time courses. It extends ggplot2 theme_classic(). |