INTRODUCTION TO THE METSTAT PACKAGE

Gooitzen Zwanenburg
Tim Dorscheidt

Version 1.0

- 2013 -

Metstat

1.1 Introduction

MetStaT is a somewhat eclectic collection of metabolomics related tools bound together in
a single R-package. The tools mostly originate with the Biosystems Data Analysis group
at the University of Amsterdam (www.bdagroup.nl). Some were developed with support
from the Netherlands Metabolomics Centre (NMC). Also the creation of this package was
done with support from the NMC. The tools in this package include

e ASCA, a multivariate data exploration tool for designed experiments based on ANOVA
decomposition followed by principal component analysis (PCA) [6].

e FoM, Figures of Merit is based on software written by Marinus van Batenburg to
calculate parameters that can be used to quantify the quality of measured data [1].

e RevNet gives three methods that can be used to reverse engineer metabolomic net-
works from measured concentration data [3]. The software is based on the corres-
ponding Matlab code written by Diana Hendrickx.

e (QStat gives an implementation of Goeman’s global test to determine whether a group
of genes has different expression patterns under different conditions [4].

e PLSDA2CV, double cross validated PLSDA analysis.

1.2 Figures of Merit

In the field of metabolomics it is not uncommon to measure concentrations of hundreds of
metabolites simultaneously using a variety of platforms such as chromatography platforms
coupled with mass spectrometry or through NMR spectrometry. The repeatability of
measurements can be taken as a figure of merit when experimental conditions between
measurements can be kept the same with a high degree of confidence. So, the same analyst
performs the measurements using the same procedures on the same equipment. When
experiments involve large numbers of samples measured in different batches, as is frequently
the practice in omics studies, additional sources of error are introduced and errors can no
longer be assumed to be constant and uncorrelated. In their paper Van Batenburg et

al. [1] introduce two new figures of merit that take into account the correlation between
metabolites and difference in variance structure between batches. The tool included in this
package calculates the measurement error distribution for a single variable (metabolite).

The measurement variance of a metabolite, o2, is estimated from repeated analysis of
a sample s. The results are assumed to be normally distributed, N (ug, 02), with us the
population mean. In omics studies the number of repeated measurements of a sample is
mostly too limited to obtain a estimate of the variance at all levels of signal intensity, .
Therefore the following estimation procedure is used to estimate the variance as a function
of the signal intensity. Estimated values 65 and fis are sorted according to the intensity
fis. The sorted (fis,) pairs are then grouped into bins of N &, levels.

The measurement variance, o2 is then modeled by the Rocke-Lorenzato model:

0'3 = O-;idd if < Qi (11)
07 = 0xaa + Ornae (B — anna)” i g > angu (1.2

The value of the measurement variance is determined by two ranges. For intensities below
the threshold appy the variance is a constant aidd, the measurement variance in absence of
metabolite intensity, i.e. only background noise is present. This parameter can be estima-
ted from blank samples. For intensities above the threshold ayg,, an intensity dependent
variance with proportionality constant o3, also contributes to the measurement variance
and the variance increases with increasing intensity.

The function FoM.Calculate takes the data for a single variable (metabolite), orders
and bins the data by intensity and determines the best fit with the Rocke-Lorenzato model.
The function returns the parameters for the best fit, aymge and oy and the sum of the
squared residuals. The fit to the Rocke-Lorenzato model is done by fitting the parameters
ovut and oagq to measurement data for varying values of appge. In this way the best
parameters fitting the model of equations (1.1) and (1.2) are found.

1.2.1 Example

The example included in the package consists of a data matrix with three columns. The
first two columns are used to identify the samples, the third column contains the measured
values. The data could represent concentrations of a plant metabolite collected in different
batches (numbered in the second column) from (in this example 15) different plots in a
test field. The program can handle only a single variable. If more variables (metabolites)
are present in the data matrix then they have to be analyzed one by one. A simple script
running through the columns might be handy if the number of variables is large. A typical
run would be:

data (FoMData)
Res <— FoM. Calculate (FoMData, cols.id = ¢(1,2), 3, 5, quiet=FALSE,
+ repeats.per.id = —1, fit.type = 2, alpha.steps = 100)

The identifying columns (Plot and Batch) are given by cols.id = c¢(1,2), the third
argument gives the data column, the number of rows per bin is here taken as 5. Verbose

output is given by setting quiet=FALSE, with repeats.per.id = -1 we do not restrict
the number of rows per bin. For the fitting of the data to the Rocke-Lorenzato model
either the default 1m method is used (fit.type=1) or the more robust rlm (fit.type=2)
from the MASS package is used. The number of different values of ay; that are tried is
determined by alpha.steps.

Best fit for FoM (P01) Best fit for FoM (P01)

E\ ~

g] T

R R

o < o <

a 3 a 3

S S

§ o § o

@ 7 @ 7

o — o —

3 7 3 7

S 8 5 8]

g g

(] _] Q]

S S

= o ° -~ S

S 7 09 o S 00 o 4o

W o | | | | | | w o | | | | | |
© 3e+05 5e+05 7e+05 © 3e+05 5e+05 7e+05
Intensity (mean of binned sample-repeat: Intensity (mean of binned sample-repeat:

Figuur 1.1: Mean variance per bin versus mean intensity of the values in the bin for ayu, = 4 (left
panel) and apgt = 100 right panel. Clearly the lower value for apt is too low as the cutoff from
< apmistop > anulg 18 at too low a value. Increasing the number of trial values of apgyy improves the
result.

The output gives for each value of appy the parameters for the best fit with that
particular value of aypy. The overall best fit values are given in Res$best.fit. In figure
1.1 the results are shown for two values of alpha.steps. The lower one (left panel) 4, is
clearly too low. The higher value of 10 (right panel) gives a better result. This is also
reflected in the sum of squares of the residuals:

$best . fit

(1]
alpha 5.689049e+405
additiveCoefficient 2.865141e409
multiplicativeCoefficient 9.839764e405
ssQresiduals 1.623603e+20
for alpha.steps=4 and
$best . fit

[,1]

alpha 5.630103e+05

additiveCoefficient 2.865141e409
multiplicativeCoefficient 9.607982e405
ssQresiduals 1.127972e+20

for alpha.steps=100

1.3 Metabolomic Networks

1.3.1 Reverse engineering of metabolomic networks

Several methods exist for the reconstruction of metabolic networks from metabolite con-
centration data. Three such methods have been implemented in this package. A short
description follows, for more details see [3] and references therein. The time-lagged corre-
lation method looks at correlations between time series that are time shifted with respect
to each other. The idea being that the influence of one species on another occurs only
after a time delay. Time-lagged correlations between time profiles of metabolite concen-
trations that exceed a set threshold are considered to have a direct interaction. The size
of the threshold has to be determined independently, for example form the fraction of real
interactions among the possible interactions in real networks of a specific size.
The Jacobian method considers the kinetic model for the metabolomic network:

GO _ r(sio).-- . 5.0) (13)
where the S;(t) is the concentration profile of metabolite 7. If metabolite i influences
metabolite 7, the element

OF,

35 (1.4)

of the Jacobian matrix is not zero, whereas the element in the Jacobian matrix will be
zero if metabolite ¢ has no effect on metabolite j. Metabolomic networks are sparse but
the Jacobian in general is not. The number of edges is reduced by considering a linear ap-
proximation of the Jacobian in which the concentrations 5; are only slightly different from
the equilibrium concentrations. The Jacobian can then be estimated from a constrained
least squares estimation, where the constraints serve to get a sparse result. By setting a
cutoff value for the elements of the Jacobian matrix below which no interaction between
elements ¢ and j is assumed, the non-zero elements of the Jacobian matrix can be used to
construct the metabolic network.

A third method, somewhat related to the Jacobian method, is the zero slopes method.
Here the effect of changing the concentration of a single metabolite on the concentration
profiles of the remaining metabolites is measured. Depending on the response of metabolite
J to a change in metabolite i (all other metabolite concentrations remaining constant),
inferences on the connection between metabolites ¢ and j are made.

1.3.2 Examples

The Jacobian method is demonstrated with an example comprising measured concentra-
tion profiles for four metabolites for four different experiments. In each of the experiments
one of the metabolites’ concentration is raised by 2% from the steady state level. The
concentrations are measured at 51 time points. Note that the algorithm expects the time
intervals between data points to be the same. The data matrix in the example has di-
mensions 51 X 4 x 4. The slice [,, 1] contains data from the first experiment in which
the concentration of the first metabolite was increased with 2% over the steady state
value. The columns of the slice represent the four metabolites, each row the measured
concentrations at different times. The time interval between measurements is 0.01 min.
The penalties for the constrained least squares are set to lambda.penalty = 0.0002 and
kappa.penalty = 1. The threshold for values of the Jacobian to be considered different
from 0 is jacobian.threshold = 0.0001. Running the example gives:

data (RevNetJacobian)
RevNet . JacobianMethod (RevNetJacobian, 0.01, SteadyState, 0.0002, 1, 0.0001)

The result is the pruned Jacobian that represents the network: a 1 in a row/column combination means
that the corresponding nodes are connected:

1] [.2] [.3] [.4]
1 1 0 0

1 1 1 0

0 1 1 0
0 1 1

0

Figuur 1.2: Directed graph derived from the Jacobian method to reverse engineer a metabolic network.

The time lagged method example matrix contains 100 time points (rows) at which
the concentrations of four metabolites (columns) are measured. Starting at time ¢t = 0
the concentration of metabolite 1 is increased by 20% every 9 seconds. The maximum
time lag max.time.lag = 55. The threshold for this matrix was set at the 55-th quantile,
threshold=.55. Running this example gives the following network.

> data(RevNetTimeLagged)
> RevNet. TimeLaggedMethod (RevNetTimeLagged, 50, .55)

The data matrix to demonstrate the zero slopes method is not unlike the matrix for
the Jacobian but the experimental conditions are different. In the four experiments the
concentration of one of the four metabolites is increased by 20%. The zero slopes method
determines the effect of this change on the other metabolites. Running the example gives
the following output:

> data(RevNetZeroSlopes)
> RevNet. ZeroSlopesMethod (RevNetZeroSlopes, 0.001, 0.00005)

1] (2] [L3] [,4]
1,] -1 1 0 0
(2] 1 -1 1 0
(3] 0 1 -1 0
(4] 0 0 1 -1

In this example the time between measurements is deltat=0.001 minutes and values
smaller than threshold=0.00005 are taken as zeros.

1.3.3 Goeman’s global test Q-statistic

Goeman’s test [2] is used to detect significant differences between conditions (for example
treatment vs. placebo) at the group level [4]. Groups may include metabolites that are
produced in certain biological pathways or groups of genes that are expressed together. This
contrasts with methods to detect differences at the level of individual genes or biomarkers.
Goeman’s global test uses a test statistic () to evaluate the significance of differences
between the groups. The function QStat.Calculate calculates the () statistic and does
a permutation test to obtain the p-value. A sample run with the data supplied by the
package:

data (QStat)
QStat . Calculate (QStatX, QStatY, 1000)
[1] ?”Performing test using 1000 random permutations.”
$y.boolean
1]
[1,] TRUE
[2,] TRUE
[16,] 1.25004909 0.27568869 —0.974640062 0.88497120 —0.66263523 0.158295994
[17,] 0.51953970 —0.24632704 —0.594107855 0.95157585 0.11064022 0.127053416
[18,] 0.49959837 0.17683026 0.075268688 0.30903975 1.44653680 0.007720738
$Q

[,1]
[1,] 39.77629

$p
[1] 0.02792632

returns the original data and the binary vector Y that determines which rows are
included in the group. The printing of the data and Y is suppressed in the output example
above. Note that preprocessing of the data, like auto scaling, needs to be done by the
user. Here, the program is called with a data matrix X with 6 columns corresponding to 6
variables, and 18 rows. The data represent an experiment with two conditions. The first
10 rows are measured under condition 1, the last 8 rows are measured under condition 2.

1.4 ASCA

ASCA is a multivariate form of ANOVA. The general idea of ASCA is to decompose
the data matrix, X, ANOVA style in a sum of mutual orthogonal effect matrices, X,
Xg, -+ that describe the main experimental factors and matrices X ,3), - - - describing the
interactions between the main factors [5, 6]:

X=1"X+X,+Xg+ +X@gy+ - +E (1.5)

The first term on the right hand side is the overall mean, 17 is a row matrix in which
each element is 1. The matrices X, Xpg, -+ describe the main experimental factors, the
two-factor interactions are described by X(4g), - - -. The last term, E contains the residuals,
variation in the data that cannot be described by the effect and interaction matrices. The
data matrix for ASCA is assumed to be balanced, i.e. the number of measurements is the
same for each treatment level. The effect matrices contain the level averages for each of
the treatment levels. ASCA does a PCA on these matrices and thus seeks out the direction
of largest variance in the level averages of the effect matrices.

The package main function to do ASCA is ASCA.Calculate. This function takes the
data matrix and the design matrix as its first two arguments. The factors and interactions
that need to be calculated can be entered as additional arguments. There is also the option
to auto scale the data. The function returns the variances explained by the different terms
in equation (1.5) together with a the factor matrices and matrices resulting from a singular
value decomposition from which scores and loadings can be retrieved. The list can be used
in the function ASCA.DoPermutationTest to perform a permutation test to establish the
significance of the experimental factors and interactions [7].

1.4.1 Example

The use of ASCA is illustrated with an example data matrix, included in the package, with
four dependent variables and two experimental factors. The first factor o has two treatment
levels, the second factor § has three treatment levels. Each observation is repeated 10
times, hence the total number of measurements in the data matrix is 2 x 3 x 10 = 60.
The experimental design is represented by the design matrix F. Each column of the

design matrix corresponds to an experimental factor, «, 3, - - -, each row corresponds to a
measurement. The elements of each row indicate the treatment levels the measurement
belongs to. For example:

> head (ASCAF,12)

[,1] [,2]
[1.] 1 1
[2.] 1 1
3,] 1 1
(4] 1 1
5.] 1 1
6, 1 1
[7.] 1 1
[8.] 1 1
9.] 1 1
(10 ,] 1 1
[11,] 12
(12] 12

We see that the first measurement falls treatment level 1 for the first factor and also in
treatment level 1 of the second factor. This is true for the first 10 measurements (rows).
The eleventh measurement is again in the first treatment level for the first factor, a, but

in the second treatment level for the second factor .
When we run the example with the data matrix ASCAX and design matrix ASCAF we
receive the output list ASCA and statistics on the explained variance:

> data(ASCAdata)

> ASCA <— ASCA. Calculate (ASCAX, ASCAF, equation.elements = 71,2,12”,
+ scaling = FALSE)

Variance explained per principal component (if >1%):

Whole data set PCl: 51.53% PC2: 32.27% PC3: 16.03%

Factor 1 PC1l: 100.00% PC2: NA% PC3: NA%

Factor 2 PC1l: 91.10% PC2: 8.90% PC3: NA%

Interaction 12 PCl: 92.22% PC2: 7.78% PC3: NA%

Percentage each effect contributes to the total sum of squares:
Overall means 99.39%

Factor 1 0.19%
Factor 2 0.05%
Interaction 12 0.03%
Residuals 0.34%

Percentage each effect contributes to the sum of squares of the centered data:
Factor 1 31.11%
Factor 2 8.74%
Interaction 12 5.08%
Residuals 55.07%

We see that PCA on the complete data matrix gives an explained variance of 52% for the
first principal component, 32% for the second principal component and 16% for the third
principal component. The contribution of factor 1 is clearly dominant, the second factor
and interactions contribute about the same to the sum of squares. It is also clear that a
significant fraction of unexplained variance remains in the residuals. The output list ASCA
can be used for plotting scores and loading plots, ASCA.Plot(ASCA). In Figure 1.3 we
show the scores plots for the two factors. The rank of the effect matrices is very low (equal

PC1 vs PC2 for factor-combination 1 PC1 vs PC2 for factor-combination 2
&
El S I3 S
A
o A & 2 o
P _ A
g o o s £ L £ = A@ =e
S
2 °q £ AAAA @, 2 ° p .]
& o
S o i S ES 5 A &oa,
a - " o2 &
A o1
§ a 1 o 42
a2 S A 3

PC1(100.00%) PC1(91.10%)

Figuur 1.3: Scores plots for the two factors of the data example. The large symbols represent the scores
of the effect matrices, the corresponding smaller symbols are the projections of the data matrix onto the
plane spanned by the first two principal components.

to the number of treatment levels minus 1). Thus, the first experimental factor only has
a single principal component, explaining the 110% explained variance of the first principal
component of the first factor. Because of the low rank, the scores plot of the effect matrices
only has a few points. The scores plots shown in Figure 1.3 also include the projections
of the data matrix onto the plane spanned by the first two principal components. In this
way, a visual overview of the distribution of the measurements can be obtained.

A permutation test is available to calculate the p-values for the significance of the
experimental effects:

> ASCA.DoPermutationTest (ASCA)
1 2 12
[1,] 0.001 0.001 0.176

This shows that the two factors have a significant effect, but their interaction does not.

1.5 PLSDA Double Cross Validation

Bibliograftie

1]

Marinus F. Van Batenburg, Leon Coulier adn Fred van Eeuwijk, Age K. Smilde, and
Johan A. Westerhuis. New figures of merit for comprehensive funcional genomics data:
The metabolomics case. Anal. Chem., 83:3267 — 3274, 2011.

J.J. Goeman, S.A. van de Geer, F. de Kort, and H.C. van Houwelingen. A global test
for groups of genes: tesing association with a clinical outcome. Bioinformatics, pages
93 — 99, 2004.

Diana M. Hendrickx, Margriet M.W.B. Hendriks, Paul H.C. Eilers, Age K. Smilde, and
Huub C.J. Hoefsloot. Reverse engineering of metabolic networks, a critical assesment.
Mol. BioSyst., 7:511 — 520, 2011.

Diana M. Hendrickx, Huub C.J. Hoefsloot, Margriet M.W.B. Hendriks, André Canelas,
and Age K. Smilde. Global test for metabolic pathway differences between conditions.
Analytica Chimica Acta, 719:8 — 15, 2012.

Jeroen J. Jansen, Huub C.J. Hoefsloot, Jan van der Greef, Marieke E. Timmerman,
Johan A. Westerhuis, and Age K. Smilde. Anova-simultaneous component analysis
(asca): a new tool for analyzing designed metabolomics data. Bioinformatics, 19:469
— 481, 2005.

Age K. Smilde, Jeroen J. Jansen, , Huub C.J. Hoefsloot, Robert-Jan A.N. Lamers, Jan
van der Greef, and Marieke E. Timmerman. Anova-simultaneous component analysis
(asca): a new tool for analyzing designed metabolomics data. Bioinformatics, 2:3043
— 3048, 2005.

Gooitzen Zwanenburg, Huub C.J. Hoefsloot, Johan A. Westerhuis, Jeroen J. Jansen,
and Age K. Smilde. Anova-principal component analysis and anova-simultaneous com-
ponent analysis: a comparison. Bioinformatics, 25:561 — 567, 2011.

10

