Sequence manipulation and scanning

Benjamin Jean-Marie Tremblay*

*b2tremblay@uwaterloo.ca

25 May 2019

Abstract

Sequences stored as XStringSet objects (from the Biostrings package) can be used by several
functions in the universalmotif package. These functions are demonstrated here and fall into
two categories: sequence manipulation and motif scanning. Sequences can be generated,
shuffled, and background frequencies of any order calculated. Scanning can be done simply to
find locations of motif hits above a certain threshold, or to find instances of enriched motifs.

Contents

1 Introduction 2
2 Creatingrandomsequences 2
3 Calculating sequence background 3
4 Shuffingsequences L 4
5 Miscellaneous string utilities. 6
6 Scanning sequences formotifs. 6
7 Enrichmentanalyses. 9
8 Testing for motif positional preferences in sequences 10
9 Motif discovery with MEME 11

Sessioninfo. 13

References 15

Sequence utilities

Introduction

This vignette goes through generating your own sequences from a specified background model,
shuffling sequences whilst maintaining a certain k-let size, and the scanning of sequences and
scoring of motifs. For an introduction to sequence motifs, see the introductory vignette. For
a basic overview of available motif-related functions, see the motif manipulation vignette.
For a discussion on motif comparisons and P-values, see the motif comparisons and P-values
vignette.

Creating random sequences

The Biostrings package offers an excellent suite of functions for dealing with biolog-
ical sequences. The universalmotif package hopes to help extend these by providing
the create_sequences() and shuffle_sequences() functions. The first of these, cre
ate_sequences(), in it's simplest form generates a set of letters in random order, then passes
these strings to the Biostrings package. The number and length of sequences can be specified.
The probabilities of individual letters can also be set.

The fregs option of create sequences() also takes higher order backgrounds. In these cases
the sequences are constructed in a Markov-style manner, where the probability of each letter
is based on which letters precede it.

library(universalmotif)
library(Biostrings)

Create some DNA sequences for use with an external program (default
is DNA):

sequences.dna <- create sequences(segqnum = 500,

freqs = c(A=0.3, (C=0.2, G=0.2, T=0.3))
writeXStringSet(sequences.dna, "dna.fasta")
sequences.dna

#> A DNAStringSet instance of length 500

#> width seq

[1] 100 ACGGCAGTAAATTTCCAGGAGAGTTTTTGTC. . .CTTTAACACCTGCGATAAACATAAATTGAGA
#> [2] 100 ATAATGACACATCGTTAAAGAAAGTGTCATT. .. TGTTGATCGTGAGAACACCTCGCAGGTAGAG
#> [3] 100 CATTATGACGCTACAAATGTGATGTCGAGTA. . .ACGTTCCGTACGTGAACGTAGCGATATTTGT
#> [4] 100 CGGGGAATGTGGTAGCAAAAAAGCTACTATG. . . CACTACTTCCAAAACTGTTGTATAAATCAAA
[5] 100 GAAATCTGGTGGGTATATGCTAAATACGTTA. . .TTCTAGCAGTTGGTCGTAAAATACCTTTCGA
#> ey 500 000

#> [496] 100 CTTTCATATAGTACGAAGAGATGAAAGATAC. . .ACAAAAAGAATCGTACGAAGAGTACTTAGTA
#> [497] 100 CCGGTGCTAATTTATCAATTTTCAATCTCAT. . .GAAACAGTCGTTTCAATCCTCCAATGTGTAC
#> [498] 100 GTAAATTGACTTGACTAGAACTTTAGCGAAA. . . TATAGCATTAGGCAATTGGCGACCTCTAATT
#> [499] 100 GATTCACCCGTGATTAAATGTTGTACACGAG. . .ATTATCGAACCAGGAGATTTTTGCAATTGAT
#> [500] 100 TGCCTCAACTAGTGACATATCTAGAAAAAAA. . .GGTAAGACCTAGTACAATAAATTCGTGCTTA

Amino acid:

create_sequences(alphabet = "AA")

https://bioconductor.org/packages/3.10/Biostrings
https://bioconductor.org/packages/3.10/universalmotif
https://bioconductor.org/packages/3.10/Biostrings

Sequence utilities

#> A AAStrin
#> width
#> [1] 100
[2] 100
#> [3] 100
#> [4] 100
[5] 100
#> C P
#> [96] 100
#> [97] 100
#> [98] 100
#> [99] 100
#> [100] 100

Any set of

gSet instance of length 100
seq

GFYAWRAVPFGFMNPLNYDWLIWQVVATRAS. .
PGWRPDAVHESEQCIACWEPAVSLYVAMDAK. .
RRSNKQAYNVDVYECKGTLKKHMSYYAIQAG. .
HSPDHEAYWFKMKHVRISFIRYLAWYAQGRN. .
LLCTGGVTKDKGNCERIAEKFWCIVYISFVY. .

FTKLLIPVHQAQQSGLIWVEAPNYIWIILNH. .
ALIKHLSYDYHYYWNAMTNCLDADHTIQMNC. .
GDHMQMS YWKTKKVTLPSERRFWHHTINPDYV. .
PWEMNPSYKQCCCRKRWFIYKNSFGSIYTDS. .
RKQFVTSWQYKWWDEKVMMTNMMYESISYDK. .

characters can be used

. KHGESLRAADHATSYNFPNHIQSEVAVSCCA
. DTSMKADRAEWAFKTQGICTVKLMVRVLHHR
.SODYELQRALEALGPHRDEQITQVVRVQMMN
. GFKQNAGNAFSRGDMKPYIFVNAQVNVATTD
.QDFSSLLSTKKNSDCYFEWTLIYDNHYDRPK

. QCWWMLNVVMAQKWRVGTLWPFFRPMYRYYQ
.WFQDGACVVTIQHFVNRKFQCVHHPFYTDNE
. IRMLDLQAVVWQCIWQSESFPQDPPFYMGEG
.RLATVAGRVDEQRQSHIAWNCLYAPPYGKLH
.MYHNPLIRAESEYAFKNSALFTFGFSYNSPI

create_sequences(alphabet = paste0(letters, collapse = ""))

#> A BStringSet instance of length 100

#> width seq

#> [1] 100 xvsghtuwpajyjdxwpwitjldbycgdgnx. . .dgpthbdbbstnrcjbalwhsclhydxwiyg
#> [2] 100 vrlnpnptfbtxshvsetrnswhcxemhnav. . .hnenodhccknaifscaxtpkfwoxhutqgxn
#> [3] 100 tmeuxhkquccvcltptqzhbhkdwgtkuot. .. luthweldechnzhcdajgxcihvvksqyvt
#> [4] 100 rixbfbfmkcmulorlinibksofuizobbr. . .pbjbdgoefubaqklebunfukscuopmgua
#> [5] 100 oeqinvajzdvsvspixkqvtergtlgriop...tiyvlhsghmvnhmvfbgknmndjsrnjotg
#> L e e

#> [96] 100 gpnkkbpkgqcsodztvbnmfjyogmmlmjd. . .tzadixliljiooeqptutywtduyknvtwc
#> [97] 100 hnviwuifvocuwzmcihimphyviqegyta. .. fihbmzrzgtmcvlsvzxxzryrqgbukbeos
#> [98] 100 fiooeodblolsfckzxergzsbxhslkfhy. ..jpxvuavahmggmocwajuhjbcxayiymny
#> [99] 100 dehvmiyyapvrpgivmbaaidfyfurnmuw. ..nvmpbcybjezddqlxavrobdneybfvulf
#> [100] 100 baacucsvqqeqykgsbxiuroizewyrthu. . .qcbjjdcckwtqutuyagowtgzlxfdrckm

Calculating sequence background

Sequence backgrounds can be retrieved for DNA and RNA sequences with oligonucleotide
Frequency() from Biostrings. Unfortunately, no such Biostrings function exists for other
sequence alphabets. The universalmotif package proves get bkg() to remedy this. Similarly,
the get bkg() function can calculate higher order backgrounds for any alphabet as well. It is
recommended to use the original Biostrings for very long DNA and RNA sequences whenever

possible though,
library(univer
Background

dna <- create_
get_bkg(dna, k

#> A
#> 0.24810000
#> AT

#> 0.05979798

as it is much faster than get_bkg().

salmotif)

of DNA sequences:
sequences ()

= 1:2, list.out = FALSE)
C G T
0.25220000 0.25240000 0.24730000
CA cc CG

0.06141414 0.06202020 0.06393939

AA AC AG
0.06202020 0.06555556 0.06121212
cT GA GC

0.06383838 0.06252525 0.06191919

https://bioconductor.org/packages/3.10/Biostrings
https://bioconductor.org/packages/3.10/Biostrings
https://bioconductor.org/packages/3.10/universalmotif
https://bioconductor.org/packages/3.10/Biostrings

Sequence utilities

#> GG GT TA TC TG TT
#> 0.06393939 0.06303030 0.06232323 0.06272727 0.06323232 0.06050505

Background of non DNA/RNA sequences:

gwerty <- create_sequences("QWERTY")

get bkg(qwerty, k = 1:2, list.out = FALSE)

#> E Q R T W Y EE
#> 0.16540000 0.16680000 0.16990000 0.16280000 0.16020000 0.17490000 0.02949495
#> EQ ER ET EW EY QE Q0
#> 0.02666667 0.03010101 0.02818182 0.02424242 0.02666667 0.02585859 0.02707071
#> OR QT ow QY RE RQ RR
#> 0.02929293 0.02767677 0.02616162 0.03070707 0.02808081 0.03000000 0.02777778
#> RT RW RY TE TQ TR T
#> 0.02545455 0.02979798 0.02888889 0.02565657 0.02636364 0.02848485 0.02474747
#> ™w TY WE wo WR WT W
#> 0.02828283 0.02919192 0.02585859 0.02777778 0.02676768 0.02717172 0.02424242
#> wy YE YQ YR YT YW YY
#> 0.02838384 0.03040404 0.02878788 0.02777778 0.02929293 0.02717172 0.03151515

4 Shuffling sequences

When performing de novo motif searches or motif enrichment analyses, it is common to do
so against a set of background sequences. In order to properly identify consistent patterns
or motifs in the target sequences, it is important that there be maintained a certain level of
sequence composition between the target and background sequences. This reduces results
which are derived purely from differential letter frequency biases.

In order to avoid these results, typically it desirable to use a set of background sequences
which preserve a certain k-let size (such as dinucleotide or trinucleotide frequencies in the case
of DNA sequences). Though for some cases a set of similar sequences may already be available
for use as background sequences, usually background sequences are obtained by shuffling the
target sequences, while preserving a desired k-let size. For this purpose, the most commonly
used tool is likely uShuffle (Jiang et al. 2008). Despite this the universalmotif package aims
to provide its own k-let shuffling capabilities for use within R via shuffle_sequences().

The universalmotif package offers three different methods for sequence shuffling: euler,
markov and linear. The first method, euler, can shuffle sequences while preserving any
desired k-let size. Furthermore 1-letter counts will always be maintained. However in order
for this to be possible, the first and last letters will remain unshuffled. This method is based
on the initial random Eulerian walk algorithm proposed by Altschul and Erickson (1985) and
the subsequent cycle-popping algorithm detailed by Propp and Wilson (1998) for quickly and
efficiently finding Eulerian walks.

The second method, markov can only guarantee that the approximate k-let frequency will be
maintained, but not that the original letter counts will be preserved. The markov method
involves determining the original k-let frequencies, then creating a new set of sequences which
will have approximately similar k-let frequency. As a result the counts for the individual letters
will likely be different. Essentially, it involves a combination of determining k-let frequencies
followed by create_sequences(). This type of shuffling is discussed by Fitch (1983).

https://bioconductor.org/packages/3.10/universalmotif
https://bioconductor.org/packages/3.10/universalmotif

Sequence utilities

The third method linear preserves the original 1-letter counts exactly, but uses a more
crude shuffling technique. In this case the sequence is split into sub-sequences every k-let (of
any size), which are then re-assembled randomly. This means that while shuffling the same
sequence multiple times with method = "linear" will result in different sequences, they will
all have started from the same set of k-length sub-sequences (just re-assembled differently).

library(universalmotif)
library(Biostrings)
data(ArabidopsisPromoters)

Potentially starting off with some external sequences:
ArabidopsisPromoters <- readDNAStringSet("ArabidopsisPromoters.fasta")

euler <- shuffle sequences(ArabidopsisPromoters, k = 2, method = "euler")
markov <- shuffle sequences(ArabidopsisPromoters, k = 2, method = "markov")
linear <- shuffle_ sequences(ArabidopsisPromoters, k = 2, method = "linear")

kl <- shuffle sequences(ArabidopsisPromoters, k = 1)

Let us compare how the methods perform:

o.letter <- get _bkg(ArabidopsisPromoters, 1, as.prob = FALSE, list.out = FALSE)
e.letter <- get bkg(euler, 1, as.prob = FALSE, list.out = FALSE)
m.letter <- get bkg(markov, 1, as.prob = FALSE, list.out = FALSE)
1.letter <- get bkg(linear, 1, as.prob = FALSE, list.out = FALSE)

data.frame(original=o0.letter, euler=e.letter, markov=m.letter, linear=l.letter)
#> original euler markov linear

A 17384 17384 17670 17384

C 8081 8081 8164 86081
G 7583 7583 7628 7583

T 16952 16952 16588 16952

.counts <- get bkg(ArabidopsisPromoters, 2, as.prob = FALSE, list.out = FALSE)
.counts <- get bkg(euler, 2, as.prob = FALSE, list.out = FALSE)
.counts <- get bkg(markov, 2, as.prob = FALSE, list.out = FALSE)
.counts <- get bkg(linear, 2, as.prob FALSE, list.out FALSE)

~ 3 M O
I
I

data.frame(original=0.counts, euler=e.counts, markov=m.counts, linear=l.counts)

#> original euler markov linear
#> AA 6893 6893 6381 6508
#> AC 2614 2614 2849 2728
#> AG 2592 2592 2692 2602
#> AT 5276 5276 5730 5527
#> CA 3014 3014 2823 2929
#> CC 1376 1376 1364 1340
#> (G 1051 1051 1242 1142
#> CT 2621 2621 2728 2661
#> GA 2734 2734 2642 2659
#> GC 1104 1104 1257 1177
#> GG 1176 1176 1188 1183

#> GT 2561 2561 2531 2555
#> TA 4725 4725 5808 5272

Sequence utilities

#> TC 2977 2977 2688 2831
#> TG 2759 2759 2495 2643
#> TT 6477 6477 5582 6193

3 Miscellaneous string utilities

Since biological sequences are usually contained in XStringSet class objects, get _bkg() and
shuffle_sequences() are designed to work with such objects. For cases when strings are not
XStringSet objects, the following functions are available:

= count_klets(): alternative to get_bkg()
= shuffle_string(): alternative to shuffle_sequences()

library(universalmotif)
string <- "DASDSDDSASDSSA"

count_klets(string, 2)
#> klets counts

#> 1 AA (0]
#> 2 AD 0
3 AS 2
#> 4 DA 1
#> 5 DD 1
#> 6 DS 3
#> 7 SA 2
#> 8 SD 3
9 SS 1

shuffle_string(string, 2)
#> [1] "DSASSDASDSDDSA"

Finally, the get_klets() function can be used to get a list of all possible k-lets for any
sequence alphabet:

library(universalmotif)

get kletS(C("A”, usu' uDu)' 2)
#> [1] "AA" "AS" "AD" "SA" "SS" "SD" "DA" "DS" "DD"

6 Scanning sequences for motifs

There are many motif-programs available with sequence scanning capabilities, such as HOMER
and tools from the MEME suite. The universalmotif package does not aim to supplant these,
but rather provide convenience functions for quickly scanning a few sequences without needing
to leave the R environment. Furthermore, these functions allow for taking advantage of the
higher-order (multifreq) motif format described here.

http://homer.ucsd.edu/homer/index.html
http://meme-suite.org/
https://bioconductor.org/packages/3.10/universalmotif

Sequence utilities

Two scanning-related functions are provided: scan_sequences() and enrich _motifs(). The
latter simply runs scan_sequences() twice on a set of target and background sequences.
Given a motif of length n, scan_sequences() considers every possible n-length subset in a
sequence and scores it using the PWM format. If the match surpasses the minimum threshold,
it is reported. This is case regardless of whether one is scanning with a regular motif, or using
the higher-order (multifreq) motif format (the multifreq matrix is converted to a PWM).

Before scanning a set of sequences, one must first decide the minimum logodds threshold for
retrieving matches. This decision is not always the same between scanning programs out in
the wild, nor is it usually told to the user what the cutoff is or how it is decided. As a result,
universalmotif aims to be as transparent as possible in this regard by allowing for complete
control of the threshold. For more details on PWMs, see the introductory vignette.

One way is to set a cutoff between 0 and 1, then multiplying the highest possible PWM score
to get a threshold. The matchPWM() function from the Biostrings package for example uses a
default of 0.8 (shown as "80%"). This is quite arbitrary of course, and every motif will end
up with a different threshold. For high information content motifs, there is really no right or
wrong threshold; as they tend to have fewer non-specific positions. This means that incorrect
letters in a match will be more punishing. To illustrate this, contrast the following PWMs:

library(universalmotif)
ml <- create motif("TATATATATA", nsites = 50, type = "PWM", pseudocount = 1)
m2 <- matrix(c(0.10,0.27,0.23,0.19,0.29,0.28,0.51,0.12,0.34,0.26,
0.36,0.29,0.51,0.38,0.23,0.16,0.17,0.21,0.23,0.36,
0.45,0.05,0.02,0.13,0.27,0.38,0.26,0.38,0.12,0.31,
0.09,0.40,0.24,0.30,0.21,0.19,0.05,0.30,0.31,0.08),
byrow = TRUE, nrow = 4)
m2 <- create motif(m2, alphabet = "DNA", type = "PWM")
ml["motif"]
#> T A T A T A T
#> A -5.672425 1.978626 -5.672425 1.978626 -5.672425 1.978626 -5.672425
#> C -5.672425 -5.672425 -5.672425 -5.672425 -5.672425 -5.672425 -5.672425
-5.672425 -5.672425 -5.672425 -5.672425 -5.672425 -5.672425 -5.672425
1.978626 -5.672425 1.978626 -5.672425 1.978626 -5.672425 1.978626
#> A T A
1.978626 -5.672425 1.978626
-5.672425 -5.672425 -5.672425
-5.672425 -5.672425 -5.672425
-5.672425 1.978626 -5.672425
m2["motif"]
#> S H C N N N
#> A -1.3219281 0.09667602 -0.12029423 -0.3959287 0.2141248 0.1491434

G
T

#*
Vv
—a 0>

#> C 0.5260688 0.19976951 1.02856915 0.6040713 -0.1202942 -0.6582115
#> G 0.8479969 -2.33628339 -3.64385619 -0.9434165 0.1110313 0.5897160
#> T -1.4739312 0.66371661 -0.05889369 0.2630344 -0.2515388 -0.4102840

#> R N N 4

#> A 1.0430687 -1.0732490 0.4436067 0.04222824
#> C -0.5418938 -0.2658941 -0.1202942 0.51171352
#> G 0.0710831 0.5897160 -1.0588937 0.29598483
#> T -2.3074285 0.2486791 0.3103401 -1.65821148

https://bioconductor.org/packages/3.10/universalmotif
https://bioconductor.org/packages/3.10/Biostrings

Sequence utilities

In the first example, sequences which do not have a matching base in every position are
punished heavily. The maximum logodds score in this case is approximately 20, and for each
incorrect position the score is reduced approximately by 5.7. This means that a threshold
of zero would allow for at most three mismatches. At this point, it is up to you how many
mismatches you would deem appropriate.

This thinking becomes impossible for the second example. In this case, mismatches are much
less punishing; to the point that one must ask, what even constitutes a mismatch? The
answer to this question is much more difficult in cases such as these. An alternative to
manually deciding upon a threshold is to instead start with maximum P-value one would
consider appropriate for a match. If, say, we want matches with a P-value of at most 0.001,
then we can use motif_pvalue() to calculate the appropriate threshold (see the comparisons
and P-values vignette for details on motif P-values).

motif pvalue(m2, pvalue = 0.001)
#> [1] 4.8493

Furthermore, the scan_sequences() function offers the ability to scan using the multifreq
slot, if available. This allows to take into account inter-positional dependencies, and get
matches which more faithfully represent the original sequences from which the motif originated.

library(universalmotif)
library(Biostrings)
data(ArabidopsisPromoters)

A 2-letter example:

motif.k2 <- create motif ("CWWWWCC", nsites = 6)
sequences.k2 <- DNAStringSet(rep(c("CAAAACC", "CTTTTCC"), 3))
motif.k2 <- add multifreq(motif.k2, sequences.k2)

Regular scanning:

head(scan_sequences(motif.k2, ArabidopsisPromoters, RC = TRUE,
threshold = 0.9, threshold.type = "logodds"))
#> DataFrame with 6 rows and 12 columns

#> motif motif.i sequence start stop score
#> <character> <integer> <character> <integer> <integer> <numeric>
1 motif 1 AT4G28150 621 627 9.08
#> 2 motif 1 AT1G19380 139 145 9.08
#> 3 motif 1 AT1G19380 204 210 9.08
#> 4 motif 1 AT1G0O3850 203 209 9.08
#> 5 motif 1 AT5G01810 821 827 9.08
6 motif 1 AT5G01816 840 846 9.08
#> match thresh.score min.score max.score score.pct strand
#> <character> <numeric> <numeric> <numeric> <numeric> <character>
#> 1 CTAAACC 8.172 -19.649 9.08 100 +
2 CTTATCC 8.172 -19.649 9.08 100 +
3 CTAAACC 8.172 -19.649 9.08 100 +
#> 4 CTAATCC 8.172 -19.649 9.08 100 +
#> 5 CATATCC 8.172 -19.649 9.08 100 +
#> 6 CAAATCC 8.172 -19.649 9.08 100 +

Sequence utilities

Using 2-letter information to scan:

head(scan_sequences(motif.k2, ArabidopsisPromoters, use.freq = 2, RC = TRUE,
threshold = 0.9, threshold.type = "logodds"))
#> DataFrame with 6 rows and 12 columns

#> motif motif.i sequence start stop score
#> <character> <integer> <character> <integer> <integer> <numeric>
#> 1 motif 1 AT4G12696 938 943 17.827
#> 2 motif 1 AT2G37950 751 756 17.827
#> 3 motif 1 AT1G498406 959 964 17.827
#> 4 motif 1 AT1G77216 184 189 17.827
#> 5 motif 1 AT1G772106 954 959 17.827
#> 6 motif 1 AT3G57640 917 922 17.827
#> match thresh.score min.score max.score score.pct strand
#> <character> <numeric> <numeric> <numeric> <numeric> <character>
#> 1 CAAAAC 16.0443 -16.842 17.827 100 +
#> 2 CAAAAC 16.0443 -16.842 17.827 100 +
#> 3 CTTTTC 16.0443 -16.842 17.827 100 +
#> 4 CAAAAC 16.0443 -16.842 17.827 100 +
#> 5 CAAAAC 16.0443 -16.842 17.827 100 +
#> 6 CTTTTC 16.0443 -16.842 17.827 100 +

As an aside: the previous example involved calling create_motif() and add_multifreq()
separately. In this case however this could have been simplified to just calling create_motif()
and using the add.multifreq option:

library(universalmotif)
library(Biostrings)

sequences <- DNAStringSet(rep(c("CAAAACC", "CTTTTCC"), 3))
motif <- create motif(sequences, add.multifreq = 2:3)

7 Enrichment analyses

The universalmotif package offers the ability to search for enriched motif sites in a set
of sequences via enrich_motifs(). There is little complexity to this, as it simply runs
scan_sequences () twice; once on a set of target sequences, and once on a set of background
sequences. After which the results between the two sequences are collated and run through
enrichment tests. The background sequences can be given explicitly, or else enrich_motifs()
will create background sequences on its own by using shuffle_sequences() on the target
sequences.

Let us consider the following basic example:

library(universalmotif)
data(ArabidopsisMotif)
data(ArabidopsisPromoters)

enrich motifs(ArabidopsisMotif, ArabidopsisPromoters, shuffle.k = 3,
threshold = 0.001, RC = TRUE)
#> DataFrame with 1 row and 11 columns

https://bioconductor.org/packages/3.10/universalmotif

Sequence utilities

#> motif motif.i target.hits target.seq.hits target.seq.count
#> <character> <integer> <integer> <integer> <integer>
#> 1 YTTTYTTTTTYTTTY 1 641 50 50
#> bkg.hits bkg.seq.hits bkg.seq.count Pval

#> <integer> <integer> <integer> <numeric>

#> 1 280 47 50 9.84621799980157e-34

#> Qval Eval

#> <numeric> <numeric>

#> 1 9.84621799980157e-34 1.96924359996031e-33

Here we can see that the motif is significantly enriched in the target sequences. The Pval
was calculated by calling fisher.test from the stats package.

One final point: always keep in mind the threshold parameter, as this will ultimately decide
the number of hits found. (A bad threshold can lead to a false negative.)

8 Testing for motif positional preferences in se-
quences

The universalmotif package provides the motif_peaks() function, which can test for posi-
tionally preferential motif sites in a set of sequences. This can be useful, for example, when
trying to determine whether a certain transcription factor binding site is more often than
not located at a certain distance from the transcription start site (TSS). The motif_peaks ()
function finds density peaks in the input data, then creates a null distribution from randomly
generated peaks to calculate peak P-values.

library(universalmotif)
data(ArabidopsisMotif)
data(ArabidopsisPromoters)

hits <- scan sequences(ArabidopsisMotif, ArabidopsisPromoters, RC = FALSE)
res <- motif_peaks(hits$start,
seq.length = unique(width(ArabidopsisPromoters)),

seq.count = length(ArabidopsisPromoters))

Significant peaks:

res$Peaks

#> DataFrame with 1 row and 2 columns
#> Peak Pval
#> <numeric> <numeric>
#> 1 891 7.00910607618512e-12

Using the datasets provided in this package, a significant motif peak was found about 100
bases away from the TSS. If you'd like to simply know the locations of any peaks, this can be
done by setting max.p = 1.

The function can also output a plot:

10

https://bioconductor.org/packages/3.10/universalmotif

Sequence utilities

res$Plot

0.001504

Cutoff for P-value =< 1e-06 /\

0.00125+4

0.001004

Kernel density

0.000754

0 250 500 750 1000
Sequence location

In this plot, red dots are used to indicate density peaks and the blue line shows the P-value
cutoff.

9 Motif discovery with MEME

The universalmotif package provides a simple wrapper to the powerful motif discovery tool
MEME (Bailey and Elkan 1994). To run an analysis with MEME, all that is required is a set
of XStringSet class sequences (defined in the Biostrings package), and run_meme() will take
care of running the program and reading the output for use within R.

The first step is to check that R can find the MEME binary in your $PATH by running
run_meme () without any parameters. If successful, you should see the default MEME help
message in your console. If not, then you'll need to provide the complete path to the MEME
binary. There are two options:

library(universalmotif)

1. Once per session: via “options()"
options(meme.bin = "/path/to/meme/bin/meme")
run_meme(...)

2. Once per run: via " run_meme()"

run_meme(..., bin = "/path/to/meme/bin/meme")

Now we need to get some sequences to use with run_meme(). At this point we can read
sequences from disk or extract them from one of the Bioconductor BSgenome packages.

11

https://bioconductor.org/packages/3.10/universalmotif
https://bioconductor.org/packages/3.10/Biostrings

Sequence utilities

library(universalmotif)
data(ArabidopsisPromoters)

1. Read sequences from disk (in fasta format):
library(Biostrings)

The following ‘readx()' functions are available in Biostrings:
DNA: readDNAStringSet

DNA with quality scores: readQualityScaledDNAStringSet

RNA: readRNAStringSet

Amino acid: readAAStringSet

Any: readBStringSet

sequences <- readDNAStringSet("/path/to/sequences.fasta")
run_meme (sequences, ...)

2. Extract from a "BSgenome® object:
library(GenomicFeatures)
library(TxDb.Athaliana.BioMart.plantsmart28)

library(BSgenome.Athaliana.TAIR.TAIR9)

Let us retrieve the same promoter sequences from ArabidopsisPromoters:
gene.names <- names(ArabidopsisPromoters)

First get the transcript coordinates from the relevant 'TxDb" object:
transcripts <- transcriptsBy(TxDb.Athaliana.BioMart.plantsmart28,
by = "gene")[gene.names]

There are multiple transcripts per gene, we only care for the first one
in each:

transcripts <- lapply(transcripts, function(x) x[1])
transcripts <- unlist(GRangesList(transcripts))

Then the actual sequences:

Unfortunately this is a case where the chromosome names do not match
between the two databases

seglevels(TxDb.Athaliana.BioMart.plantsmart28)

#> [l] lllll II2II II3II II4II II5II IIMtII IIPtII
seglevels(BSgenome.Athaliana.TAIR.TAIR9)

#> [1] "Chrl" "Chr2" "Chr3" "Chr4" "Chr5" "ChrM" "ChrcC"

So we must first rename the chromosomes in “transcripts’:
seglevels(transcripts) <- seqlevels(BSgenome.Athaliana.TAIR.TAIR9)

Finally we can extract the sequences

12

Sequence utilities

promoters <- getPromoterSeq(transcripts,
BSgenome.Athaliana.TAIR.TAIR9,
upstream = 0, downstream = 1000)

run_meme (promoters, ...)

Once the sequences are ready, there are few important options to keep in mind. One is
whether to conserve the output from MEME. The default is not to, but this can be changed
by setting the relevant option:

run_meme (sequences, output = "/path/to/desired/output/folder")

The second important option is the search function (objfun). Some search functions such as
the default classic do not require a set of background sequences, whilst some do (such as
de). If you choose one of the latter, then you can either let MEME create them for you (it will
shuffle the target sequences) or you can provide them via the control.sequences parameter.

Finally, choose how you'd like the data imported into R. Once the MEME program exits,
run_meme () will import the results into R with read_meme(); at this point you can decide if
you want just the motifs themselves (readsites = FALSE) or if you'd like the original sequence
sites as well (readsites = TRUE, the default).

There are a wealth of other MEME options available, such as the number of desired motifs
(nmotifs), the width of desired motifs (minw, maxw), the search mode (mod), assigning sequence
weights (weights), using a custom alphabet (alph), and many others. See the output from
run_meme () for a brief description of the options, or visit the online manual for more details.

Session info

#> R version 3.6.1 (2019-07-05)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.3 LTS

#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.10-bioc/R/1ib/1ibRblas.so
#> LAPACK: /home/biocbuild/bbs-3.10-bioc/R/1lib/1libRlapack.so

#>

#> locale:

#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

#> [9] LC_ADDRESS=C LC_TELEPHONE=C

#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

#>

#> attached base packages:

#> [1] stats4 parallel stats graphics grDevices utils datasets
#> [8] methods base

#>

#> other attached packages:

http://meme-suite.org/doc/meme.html

Sequence utilities

[1]
[4]
[7]
[10]
[13]

TFBSTools_1.24.0 Logolas_1.10.0 dplyr_0.8.3
ggtree_2.0.0 ggplot2_3.2.1 MotifDb_1.28.0
Biostrings_2.54.0 XVector_0.26.0 IRanges_2.20.0
S4Vectors_0.24.0 BiocGenerics_0.32.0 wuniversalmotif_1.4.0

BiocStyle 2.14.0

loaded via a namespace (and not attached):

[1]

[3]

[5]

[7]

[91]
[11]
[13]
[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[37]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[57]
[59]
[61]
[63]
[65]
[67]
[69]
[71]
[73]
[75]
[77]
[79]
[81]
[83]
[85]
[871]

VGAM_1.1-1
grImport2_0.1-5
GenomicRanges_1.38.0
bit64_0.9-7
splines_3.6.1
motifStack 1.30.0
ade4_1.7-13
jsonlite_ 1.6
Rsamtools_2.2.0
gridBase_0.4-7
G0.db_3.10.0
R.00.1.22.0
readr_1.3.1
httr_1.4.1
backports_1.1.5
Matrix_1.2-17
htmltools_0.4.0
gtable_0.3.0
TFMPvalue_0.0.8
reshape2_1.4.3
Rcpp_1.0.2
vctrs_0.2.0
nlme_3.1-141
ggseqlogo 0.1
xfun_0.10
stringr_1.4.0
lifecycle_0.1.0
gtools_3.8.1
zlibbioc 1.32.0
scales_1.0.0
hms_0.5.1
RColorBrewer_1.1-2
memoise 1.1.0
stringi_1.4.3
SQUAREM_2017.10-1
tidytree 0.2.9
BiocParallel 1.20.0
GenomeInfoDb_1.22.0
rlang_0.4.1
matrixStats_0.55.0
evaluate_0.14
purrr_0.3.3
GenomicAlignments_1.22.0
labeling 0.3

colorspace_1.4-1
base64enc_0.1-3
rGADEM_2.34.0
AnnotationDbi 1.48.0
R.methodsS3.1.7.1
knitr_1.25

zeallot 0.1.0
splitstackshape_1.4.8
seqLogo_1.52.0
annotate_1.64.0
png_0.1-7
BiocManager_1.30.9
compiler_3.6.1
rvcheck 0.1.5
assertthat _0.2.1
lazyeval _0.2.2
tools_3.6.1
glue_1.3.1
GenomeInfoDbData 1.2.2
tinytex_0.16
Biobase 2.46.0
ape_5.3
rtracklayer_1.46.0
gbRd_0.4-11
CNEr_1.22.0
ps_1.3.0
poweRlaw_0.70.2
XML_3.98-1.20
MASS_7.3-51.4
BSgenome_1.54.0
SummarizedExperiment_1.16.0
yaml_2.2.0
MotIV_1.42.0
RSQLite 2.1.2
highr_0.8
caTools_1.17.1.2
bibtex_0.4.2
Rdpack _0.11-0
pkgconfig_2.0.3
bitops_1.0-6
lattice _0.20-38
htmlwidgets 1.5.1
treeio_1.10.0

bit 1.1-14

14

Sequence utilities

#> [89] processx_3.4.1 tidyselect_0.2.5
#> [91] plyr_1.8.4 magrittr_1.5

#> [93] bookdown_0.14 R6.2.4.0

#> [95] DelayedArray_0.12.0 DBI 1.0.0

#> [97] pillar_1.4.2 withr_2.1.2

#> [99] KEGGREST_1.26.0 RCurl_1.95-4.12
#> [101] tibble_2.1.3 crayon_1.3.4

#> [103] rmarkdown_1.16 jpeg_0.1-8.1

#> [105] grid_3.6.1 data.table_1.12.6
#> [107] blob_1.2.0 digest _0.6.22

#> [109] xtable_1.8-4 tidyr_1.0.0

#> [111] R.utils_2.9.0 munsell_0.5.0

#> [113] DirichletMultinomial_1.28.0

References

Altschul, Stephen F., and Bruce W. Erickson. 1985. “Significance of Nucleotide Sequence
Alignments: A Method for Random Sequence Permutation That Preserves Dinucleotide and
Codon Usage." Molecular Biology and Evolution 2 (6):526-38.

Bailey, T.L., and C. Elkan. 1994. “Fitting a Mixture Model by Expectation Maximization
to Discover Motifs in Biopolymers.” Proceedings of the Second International Conference on
Intelligent Systems for Molecular Biology 2:28-36.

Fitch, Walter M. 1983. “Random Sequences.” Journal of Molecular Biology 163 (2):171-76.

Jiang, M., J. Anderson, J. Gillespie, and M. Mayne. 2008. “uShuffle: A Useful Tool for
Shuffling Biological Sequences While Preserving K-Let Counts.” BMC Bioinformatics 9 (192).

Propp, J.G., and D.W. Wilson. 1998. "How to Get a Perfectly Random Sample from a
Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph." Journal
of Algorithms 27:170-217.

	1 Introduction
	2 Creating random sequences
	3 Calculating sequence background
	4 Shuffling sequences
	5 Miscellaneous string utilities
	6 Scanning sequences for motifs
	7 Enrichment analyses
	8 Testing for motif positional preferences in sequences
	9 Motif discovery with MEME
	Session info
	References

