
SUNDIALS Installation Guide
SUNDIALS v6.1.1

Eddy Banks1, Alan C. Hindmarsh1, Radu Serban1, Cody J. Balos1,
David J. Gardner1, Daniel R. Reynolds2, and Carol S. Woodward1

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

February 11, 2022

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Slaven Peles, Cosmin Petra, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker, Steve G. Smith,
Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 SUNDIALS Installation Procedure 1
1.1 CMake-based installation . 2
1.2 Installed libraries and exported header files . 21

Index 27

i

ii

Chapter 1

SUNDIALS Installation Procedure

The installation of any SUNDIALS package is accomplished by installing the SUNDIALS suite as a whole, according
to the instructions that follow. The same procedure applies whether or not the downloaded file contains one or all
solvers in SUNDIALS.

The SUNDIALS suite (or individual solvers) are distributed as compressed archives (.tar.gz). The name of the
distribution archive is of the form SOLVER-X.Y.Z.tar.gz, where SOLVER is one of: sundials, cvode, cvodes,
arkode, ida, idas, or kinsol, and X.Y.Z represents the version number (of the SUNDIALS suite or of the individual
solver). To begin the installation, first uncompress and expand the sources, by issuing

% tar -zxf SOLVER-X.Y.Z.tar.gz

This will extract source files under a directory SOLVER-X.Y.Z.

Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation. The explanations of
the installation procedure begin with a few common observations:

1. The remainder of this chapter will follow these conventions:

SOLVERDIR is the directory SOLVER-X.Y.Z created above; i.e. the directory containing the SUNDIALS sources.

BUILDDIR is the (temporary) directory under which SUNDIALS is built.

INSTDIR is the directory under which the SUNDIALS exported header files and libraries will be installed. Typi-
cally, header files are exported under a directory INSTDIR/includewhile libraries are installed under INSTDIR/
lib, with INSTDIR specified at configuration time.

2. For SUNDIALS’ CMake-based installation, in-source builds are prohibited; in other words, the build directory
BUILDDIR can not be the same as SOLVERDIR and such an attempt will lead to an error. This prevents “polluting”
the source tree and allows efficient builds for different configurations and/or options.

3. The installation directory INSTDIR can not be the same as the source directory SOLVERDIR.

4. By default, only the libraries and header files are exported to the installation directory INSTDIR. If enabled by
the user (with the appropriate toggle for CMake), the examples distributed with SUNDIALS will be built to-
gether with the solver libraries but the installation step will result in exporting (by default in a subdirectory of
the installation directory) the example sources and sample outputs together with automatically generated config-
uration files that reference the installed SUNDIALS headers and libraries. As such, these configuration files for
the SUNDIALS examples can be used as “templates” for your own problems. CMake installs CMakeLists.txt
files and also (as an option available only under Unix/Linux) Makefile files. Note this installation approach
also allows the option of building the SUNDIALS examples without having to install them. (This can be used
as a sanity check for the freshly built libraries.)

1

SUNDIALS Installation Guide, v6.1.1

Further details on the CMake-based installation procedures, instructions for manual compilation, and a roadmap of the
resulting installed libraries and exported header files, are provided in §1.1 and §1.2.

1.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix and Linux Make-
files, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. In addition,
CMake also provides a GUI front end and which allows an interactive build and installation process.

The SUNDIALS build process requires CMake version 3.12.0 or higher and a working C compiler. On Unix-like
operating systems, it also requires Make (and curses, including its development libraries, for the GUI front end to
CMake, ccmake or cmake-gui), while on Windows it requires Visual Studio. While many Linux distributions offer
CMake, the version included may be out of date. CMake adds new features regularly, and you should download the
latest version from http://www.cmake.org. Build instructions for CMake (only necessary for Unix-like systems) can be
found on the CMake website. Once CMake is installed, Linux/Unix users will be able to use ccmake or cmake-gui
(depending on the version of CMake), while Windows users will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always required to use a
separate build directory. While in-source builds are possible, they are explicitly prohibited by the SUNDIALS CMake
scripts (one of the reasons being that, unlike autotools, CMake does not provide a make distclean procedure and it
is therefore difficult to clean-up the source tree after an in-source build). By ensuring a separate build directory, it is an
easy task for the user to clean-up all traces of the build by simply removing the build directory. CMake does generate
a make clean which will remove files generated by the compiler and linker.

1.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build static and
shared libraries. The INSTDIR defaults to /usr/local and can be changed by setting the CMAKE_INSTALL_PREFIX
variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based GUI by using the
ccmake command, or from a wxWidgets or QT based GUI by using the cmake-gui command. Examples for using
both text and graphical methods will be presented. For the examples shown it is assumed that there is a top level
SUNDIALS directory with appropriate source, build and install directories:

$ mkdir (...)/INSTDIR
$ mkdir (...)/BUILDDIR
$ cd (...)/BUILDDIR

1.1.1.1 Building with the GUI

Using CMake with the ccmake GUI follows the general process:

1. Select and modify values, run configure (c key)

2. New values are denoted with an asterisk

3. To set a variable, move the cursor to the variable and press enter

• If it is a boolean (ON/OFF) it will toggle the value

• If it is string or file, it will allow editing of the string

• For file and directories, the <tab> key can be used to complete

2 Chapter 1. SUNDIALS Installation Procedure

http://www.cmake.org

SUNDIALS Installation Guide, v6.1.1

4. Repeat until all values are set as desired and the generate option is available (g key)

5. Some variables (advanced variables) are not visible right away; to see advanced variables, toggle to advanced
mode (t key)

6. To search for a variable press the / key, and to repeat the search, press the n key

Using CMake with the cmake-gui GUI follows a similar process:

1. Select and modify values, click Configure

2. The first time you click Configure, make sure to pick the appropriate generator (the following will assume
generation of Unix Makfiles).

3. New values are highlighted in red

4. To set a variable, click on or move the cursor to the variable and press enter

• If it is a boolean (ON/OFF) it will check/uncheck the box

• If it is string or file, it will allow editing of the string. Additionally, an ellipsis button will appear ... on
the far right of the entry. Clicking this button will bring up the file or directory selection dialog.

• For files and directories, the <tab> key can be used to complete

5. Repeat until all values are set as desired and click the Generate button

6. Some variables (advanced variables) are not visible right away; to see advanced variables, click the advanced
button

To build the default configuration using the curses GUI, from the BUILDDIR enter the ccmake command and point to
the SOLVERDIR:

$ ccmake (...)/SOLVERDIR

Similarly, to build the default configuration using the wxWidgets GUI, from the BUILDDIR enter the cmake-gui com-
mand and point to the SOLVERDIR:

$ cmake-gui (...)/SOLVERDIR

The default curses configuration screen is shown in the following figure.

The default INSTDIR for both SUNDIALS and the corresponding examples can be changed by setting the CMAKE_-
INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in the following figure.

Pressing the g key or clicking generate will generate Makefiles including all dependencies and all rules to build
SUNDIALS on this system. Back at the command prompt, you can now run:

$ make

or for a faster parallel build (e.g. using 4 threads), you can run

$ make -j 4

To install SUNDIALS in the installation directory specified in the configuration, simply run:

$ make install

1.1. CMake-based installation 3

SUNDIALS Installation Guide, v6.1.1

Fig. 1.1: Default configuration screen. Note: Initial screen is empty. To get this default configuration, press ‘c’
repeatedly (accepting default values denoted with asterisk) until the ‘g’ option is available.

4 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

Fig. 1.2: Changing the INSTDIR for SUNDIALS and corresponding EXAMPLES.

1.1. CMake-based installation 5

SUNDIALS Installation Guide, v6.1.1

1.1.1.2 Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with the cmake com-
mand. The following will build the default configuration:

$ cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
$ make
$ make install

1.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below. Note that the
default values shown are for a typical configuration on a Linux system and are provided as illustration only.

BUILD_ARKODE
Build the ARKODE library

Default: ON

BUILD_CVODE
Build the CVODE library

Default: ON

BUILD_CVODES
Build the CVODES library

Default: ON

BUILD_IDA
Build the IDA library

Default: ON

BUILD_IDAS
Build the IDAS library

Default: ON

BUILD_KINSOL
Build the KINSOL library

Default: ON

BUILD_SHARED_LIBS
Build shared libraries

Default: ON

BUILD_STATIC_LIBS
Build static libraries

Default: ON

CMAKE_BUILD_TYPE
Choose the type of build, options are: None, Debug, Release, RelWithDebInfo, and MinSizeRel

Default:

6 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

Note: Specifying a build type will trigger the corresponding build type specific compiler flag options below
which will be appended to the flags set by CMAKE_<language>_FLAGS.

CMAKE_C_COMPILER
C compiler

Default: /usr/bin/cc

CMAKE_C_FLAGS
Flags for C compiler

Default:

CMAKE_C_FLAGS_DEBUG
Flags used by the C compiler during debug builds

Default: -g

CMAKE_C_FLAGS_MINSIZEREL
Flags used by the C compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE
Flags used by the C compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_C_STANDARD
The C standard to build C parts of SUNDIALS with.

Default: 99

Options: 90, 99, 11, 17.

CMAKE_C_EXTENSIONS
Enable compiler specific C extensions.

Default: OFF

CMAKE_CXX_COMPILER
C++ compiler

Default: /usr/bin/c++

Note: A C++ compiler is only required when a feature requiring C++ is enabled (e.g., CUDA, HIP, SYCL,
RAJA, etc.) or the C++ examples are enabled.

All SUNDIALS solvers can be used from C++ applications without setting any additional configuration options.

CMAKE_CXX_FLAGS
Flags for C++ compiler

Default:

CMAKE_CXX_FLAGS_DEBUG
Flags used by the C++ compiler during debug builds

Default: -g

1.1. CMake-based installation 7

SUNDIALS Installation Guide, v6.1.1

CMAKE_CXX_FLAGS_MINSIZEREL
Flags used by the C++ compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_CXX_FLAGS_RELEASE
Flags used by the C++ compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_CXX_STANDARD
The C++ standard to build C++ parts of SUNDIALS with.

Default: 11

Options: 98, 11, 14, 17, 20.

CMAKE_CXX_EXTENSIONS
Enable compiler specific C++ extensions.

Default: OFF

CMAKE_Fortran_COMPILER
Fortran compiler

Default: /usr/bin/gfortran

Note: Fortran support (and all related options) are triggered only if either Fortran-C support (BUILD_FORTRAN_-
MODULE_INTERFACE) or LAPACK (ENABLE_LAPACK) support is enabled.

CMAKE_Fortran_FLAGS
Flags for Fortran compiler

Default:

CMAKE_Fortran_FLAGS_DEBUG
Flags used by the Fortran compiler during debug builds

Default: -g

CMAKE_Fortran_FLAGS_MINSIZEREL
Flags used by the Fortran compiler during release minsize builds

Default: -Os

CMAKE_Fortran_FLAGS_RELEASE
Flags used by the Fortran compiler during release builds

Default: -O3

CMAKE_INSTALL_LIBDIR
The directory under which libraries will be installed.

Default: Set based on the system: lib, lib64, or lib/<multiarch-tuple>

CMAKE_INSTALL_PREFIX
Install path prefix, prepended onto install directories

Default: /usr/local

Note: The user must have write access to the location specified through this option. Exported SUNDIALS
header files and libraries will be installed under subdirectories include and lib of CMAKE_INSTALL_PREFIX,

8 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

respectively.

ENABLE_CUDA
Build the SUNDIALS CUDA modules.

Default: OFF

CMAKE_CUDA_ARCHITECTURES
Specifies the CUDA architecture to compile for.

Default: sm_30

ENABLE_XBRAID
Enable or disable the ARKStep + XBraid interface.

Default: OFF

Note: See additional information on building with XBraid enabled in §1.1.4.

EXAMPLES_ENABLE_C
Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CXX
Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_CUDA
Build the SUNDIALS CUDA examples

Default: OFF

Note: You need to enable CUDA support to build these examples.

EXAMPLES_ENABLE_F2003
Build the SUNDIALS Fortran2003 examples

Default: ON (if BUILD_FORTRAN_MODULE_INTERFACE is ON)

EXAMPLES_INSTALL
Install example files

Default: ON

Note: This option is triggered when any of the SUNDIALS example programs are enabled (EXAMPLES_-
ENABLE_<language> is ON). If the user requires installation of example programs then the sources and sample
output files for all SUNDIALS modules that are currently enabled will be exported to the directory specified
by EXAMPLES_INSTALL_PATH. A CMake configuration script will also be automatically generated and exported
to the same directory. Additionally, if the configuration is done under a Unix-like system, makefiles for the
compilation of the example programs (using the installed SUNDIALS libraries) will be automatically generated
and exported to the directory specified by EXAMPLES_INSTALL_PATH.

EXAMPLES_INSTALL_PATH
Output directory for installing example files

1.1. CMake-based installation 9

SUNDIALS Installation Guide, v6.1.1

Default: /usr/local/examples

Note: The actual default value for this option will be an examples subdirectory created under CMAKE_IN-
STALL_PREFIX.

BUILD_FORTRAN_MODULE_INTERFACE
Enable Fortran2003 interface

Default: OFF

ENABLE_HYPRE
Flag to enable hypre support

Default: OFF

Note: See additional information on building with hypre enabled in §1.1.4.

HYPRE_INCLUDE_DIR
Path to hypre header files

Default: none

HYPRE_LIBRARY
Path to hypre installed library files

Default: none

ENABLE_KLU
Enable KLU support

Default: OFF

Note: See additional information on building with KLU enabled in §1.1.4.

KLU_INCLUDE_DIR
Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR
Path to SuiteSparse installed library files

Default: none

ENABLE_LAPACK
Enable LAPACK support

Default: OFF

Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with LAPACK enabled in §1.1.4.

LAPACK_LIBRARIES
LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

10 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

ENABLE_MAGMA
Enable MAGMA support.

Default: OFF

Note: Setting this option to ON will trigger additional options related to MAGMA.

MAGMA_DIR
Path to the root of a MAGMA installation.

Default: none

SUNDIALS_MAGMA_BACKENDS
Which MAGMA backend to use under the SUNDIALS MAGMA interface.

Default: CUDA

ENABLE_MPI
Enable MPI support. This will build the parallel nvector and the MPI-aware version of the ManyVector library.

Default: OFF

Note: Setting this option to ON will trigger several additional options related to MPI.

MPI_C_COMPILER
mpicc program

Default:

MPI_CXX_COMPILER
mpicxx program

Default:

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON) and C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by default
without setting any additional configuration options other than ENABLE_MPI.

MPI_Fortran_COMPILER
mpif90 program

Default:

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON) and Fortran-C support is enabled
(EXAMPLES_ENABLE_F2003 is ON).

MPIEXEC_EXECUTABLE
Specify the executable for running MPI programs

Default: mpirun

1.1. CMake-based installation 11

SUNDIALS Installation Guide, v6.1.1

Note: This option is triggered only if MPI is enabled (ENABLE_MPI is ON).

ENABLE_ONEMKL
Enable oneMKL support.

Default: OFF

ONEMKL_DIR
Path to oneMKL installation.

Default: none

ENABLE_OPENMP
Enable OpenMP support (build the OpenMP NVector)

Default: OFF

ENABLE_PETSC
Enable PETSc support

Default: OFF

Note: See additional information on building with PETSc enabled in §1.1.4.

PETSC_DIR
Path to PETSc installation

Default: none

PETSC_LIBRARIES
Semi-colon separated list of PETSc link libraries. Unless provided by the user, this is autopopulated based on
the PETSc installation found in PETSC_DIR.

Default: none

PETSC_INCLUDES
Semi-colon separated list of PETSc include directroies. Unless provided by the user, this is autopopulated based
on the PETSc installation found in PETSC_DIR.

Default: none

ENABLE_PTHREAD
Enable Pthreads support (build the Pthreads NVector)

Default: OFF

ENABLE_RAJA
Enable RAJA support.

Default: OFF

Note: You need to enable CUDA or HIP in order to build the RAJA vector module.

SUNDIALS_RAJA_BACKENDS
If building SUNDIALS with RAJA support, this sets the RAJA backend to target. Values supported are CUDA,
HIP, or SYCL.

Default: CUDA

12 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

ENABLE_SUPERLUDIST
Enable SuperLU_DIST support

Default: OFF

Note: See additional information on building wtih SuperLU_DIST enabled in §1.1.4.

SUPERLUDIST_INCLUDE_DIR
Path to SuperLU_DIST header files (under a typical SuperLU_DIST install, this is typically the SuperLU_DIST
SRC directory)

Default: none

SUPERLUDIST_LIBRARY_DIR
Path to SuperLU_DIST installed library files

Default: none

SUPERLUDIST_LIBRARIES
Semi-colon separated list of libraries needed for SuperLU_DIST

Default: none

SUPERLUDIST_OpenMP
Enable SUNDIALS support for SuperLU_DIST built with OpenMP

Default: none

Note: SuperLU_DIST must be built with OpenMP support for this option to function. Additionally the environ-
ment variable OMP_NUM_THREADS must be set to the desired number of threads.

ENABLE_SUPERLUMT
Enable SuperLU_MT support

Default: OFF

Note: See additional information on building with SuperLU_MT enabled in §1.1.4.

SUPERLUMT_INCLUDE_DIR
Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is typically the SuperLU_MT SRC
directory)

Default: none

SUPERLUMT_LIBRARY_DIR
Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_THREAD_TYPE
Must be set to Pthread or OpenMP, depending on how SuperLU_MT was compiled.

Default: Pthread

ENABLE_SYCL
Enable SYCL support.

Default: OFF

1.1. CMake-based installation 13

SUNDIALS Installation Guide, v6.1.1

Note: At present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler. CMake does not
currently support autodetection of SYCL compilers and CMAKE_CXX_COMPILER must be set to a valid SYCL
compiler i.e., dpcpp in order to build with SYCL support.

SUNDIALS_BUILD_WITH_MONITORING
Build SUNDIALS with capabilties for fine-grained monitoring of solver progress and statistics. This is primarily
useful for debugging.

Default: OFF

Warning: Building with monitoring may result in minor performance degradation even if monitoring is not
utilized.

SUNDIALS_BUILD_WITH_PROFILING
Build SUNDIALS with capabilties for fine-grained profiling.

Default: OFF

Warning: Profiling will impact performance, and should be enabled judiciously.

ENABLE_CALIPER
Enable CALIPER support

Default: OFF

Note: Using Caliper requires setting SUNDIALS_BUILD_WITH_PROFILING to ON.

CALIPER_DIR
Path to the root of a Caliper installation

Default: None

SUNDIALS_F77_FUNC_CASE
Specify the case to use in the Fortran name-mangling scheme, options are: lower or upper

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default (lower)
scheme if one can not be determined. If used, SUNDIALS_F77_FUNC_UNDERSCORES must also be set.

SUNDIALS_F77_FUNC_UNDERSCORES
Specify the number of underscores to append in the Fortran name-mangling scheme, options are: none, one, or
two

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default (one)
scheme if one can not be determined. If used, SUNDIALS_F77_FUNC_CASE must also be set.

14 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

SUNDIALS_INDEX_TYPE
Integer type used for SUNDIALS indices. The size must match the size provided for the SUNDIALS_INDEX_SIZE
option.

Default: Automatically determined based on SUNDIALS_INDEX_SIZE

Note: In past SUNDIALS versions, a user could set this option to INT64_T to use 64-bit integers, or INT32_T
to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are deprecated. For SUNDIALS 3.2.0
and up, a user will only need to use the SUNDIALS_INDEX_SIZE option in most cases.

SUNDIALS_INDEX_SIZE
Integer size (in bits) used for indices in SUNDIALS, options are: 32 or 64

Default: 64

Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit integer types are
(in order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order of
preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to provide a
type not listed here.

SUNDIALS_PRECISION
The floating-point precision used in SUNDIALS packages and class implementations, options are: double,
single, or extended

Default: double

SUNDIALS_INSTALL_CMAKEDIR
Installation directory for the SUNDIALS cmake files (relative to CMAKE_INSTALL_PREFIX).

Default: CMAKE_INSTALL_PREFIX/cmake/sundials

USE_GENERIC_MATH
Use generic (stdc) math libraries

Default: ON

XBRAID_DIR
The root directory of the XBraid installation.

Default: OFF

XBRAID_INCLUDES
Semi-colon separated list of XBraid include directories. Unless provided by the user, this is autopopulated based
on the XBraid installation found in XBRAID_DIR.

Default: none

XBRAID_LIBRARIES
Semi-colon separated list of XBraid link libraries. Unless provided by the user, this is autopopulated based on
the XBraid installation found in XBRAID_DIR.

Default: none

USE_XSDK_DEFAULTS
Enable xSDK (see https://xsdk.info for more information) default configuration settings. This sets CMAKE_-
BUILD_TYPE to Debug, SUNDIALS_INDEX_SIZE to 32 and SUNDIALS_PRECISION to double.

Default: OFF

1.1. CMake-based installation 15

https://xsdk.info

SUNDIALS Installation Guide, v6.1.1

1.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpif90 parallel compilers,
enable compilation of examples, and install libraries, headers, and example sources under subdirectories of /home/
myname/sundials/, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_MPI=ON \
> /home/myname/sundials/srcdir

% make install

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_MPI=ON \
> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir

% make install

1.1.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing solutions. The
following are some notes addressing specific configurations when using the supported third party libraries.

1.1.4.1 Building with LAPACK

To enable LAPACK, set the ENABLE_LAPACK option to ON. If the directory containing the LAPACK library is in the
LD_LIBRARY_PATH environment variable, CMake will set the LAPACK_LIBRARIES variable accordingly, otherwise
CMake will attempt to find the LAPACK library in standard system locations. To explicitly tell CMake what library to
use, the LAPACK_LIBRARIES variable can be set to the desired libraries required for LAPACK.

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DENABLE_LAPACK=ON \
> -DLAPACK_LIBRARIES=/mylapackpath/lib/libblas.so;/mylapackpath/lib/liblapack.so \
> /home/myname/sundials/srcdir

% make install

Note: If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the options SUNDI-
ALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORESmust be set in order to bypass the check for a Fortran

16 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

compiler and define the name-mangling scheme. The defaults for these options in earlier versions of SUNDIALS were
lower and one, respectively.

SUNDIALS has been tested with OpenBLAS 0.3.18.

1.1.4.2 Building with KLU

KLU is a software package for the direct solution of sparse nonsymmetric linear systems of equations that arise in
circuit simulation and is part of SuiteSparse, a suite of sparse matrix software. The library is developed by Texas A&M
University and is available from the SuiteSparse GitHub repository.

To enable KLU, set ENABLE_KLU to ON, set KLU_INCLUDE_DIR to the include path of the KLU installation and
set KLU_LIBRARY_DIR to the lib path of the KLU installation. The CMake configure will result in populating the
following variables: AMD_LIBRARY, AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY, CO-
LAMD_LIBRARY_DIR, and KLU_LIBRARY.

SUNDIALS has been tested with SuiteSparse version 5.10.1.

1.1.4.3 Building with SuperLU_DIST

SuperLU_DIST is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations in a distributed memory setting. The library is developed by Lawrence Berkeley National Laboratory and is
available from the SuperLU_DIST GitHub repository.

To enable SuperLU_DIST, set ENABLE_SUPERLUDIST to ON, set SUPERLUDIST_INCLUDE_DIR to the SRC path of the
SuperLU_DIST installation, and set the variable SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_DIST
installation. At the same time, the variable SUPERLUDIST_LIBRARIES must be set to a semi-colon separated list of
other libraries SuperLU_DIST depends on. For example, if SuperLU_DIST was built with LAPACK, then include the
LAPACK library in this list. If SuperLU_DIST was built with OpenMP support, then you may set SUPERLUDIST_-
OpenMP to ON utilize the OpenMP functionality of SuperLU_DIST.

SUNDIALS has been tested with SuperLU_DIST 7.1.1.

1.1.4.4 Building with SuperLU_MT

SuperLU_MT is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations on shared memory parallel machines. The library is developed by Lawrence Berkeley National Laboratory
and is available from the SuperLU_MT GitHub repository.

To enable SuperLU_MT, set ENABLE_SUPERLUMT to ON, set SUPERLUMT_INCLUDE_DIR to the SRC path of the Su-
perLU_MT installation, and set the variable SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_MT installa-
tion. At the same time, the variable SUPERLUMT_LIBRARIESmust be set to a semi-colon separated list of other libraries
SuperLU_MT depends on. For example, if SuperLU_MT was build with an external blas library, then include the full
path to the blas library in this list. Additionally, the variable SUPERLUMT_THREAD_TYPEmust be set to either Pthread
or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by having either
ENABLE_OPENMP or ENABLE_PTHREAD set to ON then SuperLU_MT should be set to use the same threading type.

SUNDIALS has been tested with SuperLU_MT version 3.1.

1.1. CMake-based installation 17

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/xiaoyeli/superlu_dist
https://github.com/xiaoyeli/superlu_mt

SUNDIALS Installation Guide, v6.1.1

1.1.4.5 Building with PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines for simu-
lating applications modeled by partial differential equations. The library is developed by Argonne National Laboratory
and is available from the PETSc GitLab repository.

To enable PETSc, set ENABLE_PETSC to ON, and set PETSC_DIR to the path of the PETSc installation. Alternatively,
a user can provide a list of include paths in PETSC_INCLUDES and a list of complete paths to the PETSc libraries in
PETSC_LIBRARIES.

SUNDIALS has been tested with PETSc version 3.16.1.

1.1.4.6 Building with hypre

hypre is a library of high performance preconditioners and solvers featuring multigrid methods for the solution of large,
sparse linear systems of equations on massively parallel computers. The library is developed by Lawrence Livermore
National Laboratory and is available from the hypre GitHub repository.

To enable hypre, set ENABLE_HYPRE to ON, set HYPRE_INCLUDE_DIR to the include path of the hypre installation,
and set the variable HYPRE_LIBRARY_DIR to the lib path of the hypre installation.

Note: SUNDIALS must be configured so that SUNDIALS_INDEX_SIZE is compatible with HYPRE_BigInt in the
hypre installation.

SUNDIALS has been tested with hypre version 2.23.0

1.1.4.7 Building with MAGMA

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) project provides a dense linear algebra library
similar to LAPACK but targeting heterogeneous architectures. The library is developed by the University of Tennessee
and is available from the UTK webpage.

To enable the SUNDIALS MAGMA interface set ENABLE_MAGMA to ON, MAGMA_DIR to the MAGMA installation path,
and SUNDIALS_MAGMA_BACKENDS to the desired MAGMA backend to use with SUNDIALS e.g., CUDA or HIP.

SUNDIALS has been tested with MAGMA version 2.6.1.

1.1.4.8 Building with oneMKL

The Intel oneAPI Math Kernel Library (oneMKL) includes CPU and DPC++ interfaces for LAPACK dense linear
algebra routines. The SUNDIALS oneMKL interface targets the DPC++ routines, to utilize the CPU routine see
§1.1.4.1.

To enable the SUNDIALS oneMKL interface set ENABLE_ONEMKL to ON and ONEMKL_DIR to the oneMKL installation
path.

SUNDIALS has been tested with oneMKL version 2021.4.

18 Chapter 1. SUNDIALS Installation Procedure

https://gitlab.com/petsc/petsc
https://github.com/hypre-space/hypre
https://icl.utk.edu/magma/index.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

SUNDIALS Installation Guide, v6.1.1

1.1.4.9 Building with CUDA

The NVIDIA CUDA Toolkit provides a development environment for GPU-accelerated computing with NVIDIA
GPUs. The CUDA Toolkit and compatible NVIDIA drivers are available from the NVIDIA developer website.

To enable CUDA, set ENABLE_CUDA to ON. If CUDA is installed in a nonstandard location, you may be prompted to
set the variable CUDA_TOOLKIT_ROOT_DIR with your CUDA Toolkit installation path. To enable CUDA examples, set
EXAMPLES_ENABLE_CUDA to ON.

SUNDIALS has been tested with the CUDA toolkit versions 10 and 11.

1.1.4.10 Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from the RAJA GitHub repository.

Building SUNDIALS RAJA modules requires a CUDA, HIP, or SYCL enabled RAJA installation. To enable RAJA, set
ENABLE_RAJA to ON, set SUNDIALS_RAJA_BACKENDS to the desired backend (CUDA, HIP, or SYCL), and set ENABLE_-
CUDA, ENABLE_HIP, or ENABLE_SYCL to ON depending on the selected backend. If RAJA is installed in a nonstandard
location you will be prompted to set the variable RAJA_DIR with the path to the RAJA CMake configuration file. To
enable building the RAJA examples set EXAMPLES_ENABLE_CXX to ON.

SUNDIALS has been tested with RAJA version 0.14.0.

1.1.4.11 Building with XBraid

XBraid is parallel-in-time library implementing an optimal-scaling multigrid reduction in time (MGRIT) solver. The
library is developed by Lawrence Livermore National Laboratory and is available from the XBraid GitHub repository.

To enable XBraid support, set ENABLE_XBRAID to ON, set XBRAID_DIR to the root install location of XBraid or the
location of the clone of the XBraid repository.

Note: At this time the XBraid types braid_Int and braid_Real are hard-coded to int and double respectively.
As such SUNDIALS must be configured with SUNDIALS_INDEX_SIZE set to 32 and SUNDIALS_PRECISION set to
double. Additionally, SUNDIALS must be configured with ENABLE_MPI set to ON.

SUNDIALS has been tested with XBraid version 3.0.0.

1.1.5 Testing the build and installation

If SUNDIALS was configured with EXAMPLES_ENABLE_<language> options to ON, then a set of regression tests can
be run after building with the make command by running:

% make test

Additionally, if EXAMPLES_INSTALL was also set to ON, then a set of smoke tests can be run after installing with the
make install command by running:

% make test_install

1.1. CMake-based installation 19

https://developer.nvidia.com/cuda-downloads
https://github.com/LLNL/RAJA
https://github.com/XBraid/xbraid

SUNDIALS Installation Guide, v6.1.1

1.1.6 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and in-
stall the examples, set at least of the EXAMPLES_ENABLE_<language> options to ON, and set EXAMPLES_INSTALL to
ON. Specify the installation path for the examples with the variable EXAMPLES_INSTALL_PATH. CMake will generate
CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed SUNDIALS
headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as well as serve as a
template for creating user developed solutions. To use the supplied Makefile simply run make to compile and generate
the executables. To use CMake from within the installed example directory, run cmake (or ccmake or cmake-gui to
use the GUI) followed by make to compile the example code. Note that if CMake is used, it will overwrite the traditional
Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

Note: There will potentially be differences in the output due to machine architecture, compiler versions, use of third
party libraries etc.

1.1.7 Configuring, building, and installing on Windows

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the SOLVERDIR

2. Create a separate BUILDDIR

3. Open a Visual Studio Command Prompt and cd to BUILDDIR

4. Run cmake-gui ../SOLVERDIR

a. Hit Configure

b. Check/Uncheck solvers to be built

c. Change CMAKE_INSTALL_PREFIX to INSTDIR

d. Set other options as desired

e. Hit Generate

5. Back in the VS Command Window:

a. Run msbuild ALL_BUILD.vcxproj

b. Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTDIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file to
open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

20 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

1.2 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command

$ make install

will install the libraries under LIBDIR and the public header files under INCLUDEDIR. The values for these directories
are INSTDIR/lib and INSTDIR/include, respectively. The location can be changed by setting the CMake variable
CMAKE_INSTALL_PREFIX. Although all installed libraries reside under LIBDIR/lib, the public header files are further
organized into subdirectories under INCLUDEDIR/include.

The installed libraries and exported header files are listed for reference in the table below. The file extension .LIB is
typically .so for shared libraries and .a for static libraries. Note that, in this table names are relative to LIBDIR for
libraries and to INCLUDEDIR for header files.

A typical user program need not explicitly include any of the shared SUNDIALS header files from under the
INCLUDEDIR/include/sundials directory since they are explicitly included by the appropriate solver header files
(e.g., sunlinsol_dense.h includes sundials_dense.h). However, it is both legal and safe to do so, and would be
useful, for example, if the functions declared in sundials_dense.h are to be used in building a preconditioner.

1.2.1 Using SUNDIALS as a Third Party Library in other CMake Projects

The make install command will also install a CMake package configuration file that other CMake projects can load
to get all the information needed to build against SUNDIALS. In the consuming project’s CMake code, the find_-
package command may be used to search for the configuration file, which will be installed to instdir/SUNDIALS_-
INSTALL_CMAKEDIR/SUNDIALSConfig.cmake alongside a package version file instdir/SUNDIALS_INSTALL_-
CMAKEDIR/SUNDIALSConfigVersion.cmake. Together these files contain all the information the consuming project
needs to use SUNDIALS, including exported CMake targets. The SUNDIALS exported CMake targets follow the same
naming convention as the generated library binaries, e.g. the exported target for CVODE is SUNDIALS::cvode. The
CMake code snipped below shows how a consuming project might leverage the SUNDIALS package configuration file
to build against SUNDIALS in their own CMake project.

project(MyProject)

Set the variable SUNDIALS_DIR to the SUNDIALS instdir.
When using the cmake CLI command, this can be done like so:
cmake -D SUNDIALS_DIR=/path/to/sundials/installation

find_package(SUNDIALS REQUIRED)

add_executable(myexec main.c)

Link to SUNDIALS libraries through the exported targets.
This is just an example, users should link to the targets appropriate
for their use case.
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

Table 1.1: SUNDIALS shared libraries and header files
Shared Headers sundials/sundials_band.h

sundials/sundials_config.h
sundials/sundials_context.h
sundials/sundials_cuda_policies.hpp

continues on next page

1.2. Installed libraries and exported header files 21

https://cmake.org/cmake/help/v3.12/manual/cmake-packages.7.html#package-configuration-file

SUNDIALS Installation Guide, v6.1.1

Table 1.1 – continued from previous page
sundials/sundials_dense.h
sundials/sundials_direct.h
sundials/sundials_hip_policies.hpp
sundials/sundials_iterative.h
sundials/sundials_linearsolver.h
sundials/sundials_math.h
sundials/sundials_matrix.h
sundials/sundials_memory.h
sundials/sundials_mpi_types.h
sundials/sundials_nonlinearsolver.h
sundials/sundials_nvector.h
sundials/sundials_types.h
sundials/sundials_version.h
sundials/sundials_xbraid.h

NVECTOR Modules
SERIAL Libraries libsundials_nvecserial.LIB

Headers nvector/nvector_serial.h
PARALLEL Libraries libsundials_nvecparallel.LIB

Headers nvector/nvector_parallel.h
OPENMP Libraries libsundials_nvecopenmp.LIB

Headers nvector/nvector_openmp.h
PTHREADS Libraries libsundials_nvecpthreads.LIB

Headers nvector/nvector_pthreads.h
PARHYP Libraries libsundials_nvecparhyp.LIB

Headers nvector/nvector_parhyp.h
PETSC Libraries libsundials_nvecpetsc.LIB

Headers nvector/nvector_petsc.h
CUDA Libraries libsundials_nveccuda.LIB

Headers nvector/nvector_cuda.h
HIP Libraries libsundials_nvechip.LIB

Headers nvector/nvector_hip.h
RAJA Libraries libsundials_nveccudaraja.LIB

libsundials_nvechipraja.LIB
Headers nvector/nvector_raja.h

SYCL Libraries libsundials_nvecsycl.LIB
Headers nvector/nvector_sycl.h

MANYVECTOR Libraries libsundials_nvecmanyvector.LIB
Headers nvector/nvector_manyvector.h

MPIMANYVECTOR Libraries libsundials_nvecmpimanyvector.LIB
Headers nvector/nvector_mpimanyvector.h

MPIPLUSX Libraries libsundials_nvecmpiplusx.LIB
Headers nvector/nvector_mpiplusx.h

SUNMATRIX Modules
BAND Libraries libsundials_sunmatrixband.LIB

Headers sunmatrix/sunmatrix_band.h
CUSPARSE Libraries libsundials_sunmatrixcusparse.LIB

Headers sunmatrix/sunmatrix_cusparse.h
DENSE Libraries libsundials_sunmatrixdense.LIB

Headers sunmatrix/sunmatrix_dense.h
MAGMADENSE Libraries libsundials_sunmatrixmagmadense.LIB

Headers sunmatrix/sunmatrix_magmadense.h
ONEMKLDENSE Libraries libsundials_sunmatrixonemkldense.LIB

continues on next page

22 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

Table 1.1 – continued from previous page
Headers sunmatrix/sunmatrix_onemkldense.h

SPARSE Libraries libsundials_sunmatrixsparse.LIB
Headers sunmatrix/sunmatrix_sparse.h

SLUNRLOC Libraries libsundials_sunmatrixslunrloc.LIB
Headers sunmatrix/sunmatrix_slunrloc.h

SUNLINSOL Modules
BAND Libraries libsundials_sunlinsolband.LIB

Headers sunlinsol/sunlinsol_band.h
CUSOLVERSP_BATCHQR Libraries libsundials_sunlinsolcusolversp.LIB

Headers sunlinsol/sunlinsol_cusolversp_batchqr.h
DENSE Libraries libsundials_sunlinsoldense.LIB

Headers sunlinsol/sunlinsol_dense.h
KLU Libraries libsundials_sunlinsolklu.LIB

Headers sunlinsol/sunlinsol_klu.h
LAPACKBAND Libraries libsundials_sunlinsollapackband.LIB

Headers sunlinsol/sunlinsol_lapackband.h
LAPACKDENSE Libraries libsundials_sunlinsollapackdense.LIB

Headers sunlinsol/sunlinsol_lapackdense.h
MAGMADENSE Libraries libsundials_sunlinsolmagmadense.LIB

Headers sunlinsol/sunlinsol_magmadense.h
ONEMKLDENSE Libraries libsundials_sunlinsolonemkldense.LIB

Headers sunlinsol/sunlinsol_onemkldense.h
PCG Libraries libsundials_sunlinsolpcg.LIB

Headers sunlinsol/sunlinsol_pcg.h
SPBCGS Libraries libsundials_sunlinsolspbcgs.LIB

Headers sunlinsol/sunlinsol_spbcgs.h
SPFGMR Libraries libsundials_sunlinsolspfgmr.LIB

Headers sunlinsol/sunlinsol_spfgmr.h
SPGMR Libraries libsundials_sunlinsolspgmr.LIB

Headers sunlinsol/sunlinsol_spgmr.h
SPTFQMR Libraries libsundials_sunlinsolsptfqmr.LIB

Headers sunlinsol/sunlinsol_sptfqmr.h
SUPERLUDIST Libraries libsundials_sunlinsolsuperludist.LIB

Headers sunlinsol/sunlinsol_superludist.h
SUPERLUMT Libraries libsundials_sunlinsolsuperlumt.LIB

Headers sunlinsol/sunlinsol_superlumt.h
SUNNONLINSOL Modules
NEWTON Libraries libsundials_sunnonlinsolnewton.LIB

Headers sunnonlinsol/sunnonlinsol_newton.h
FIXEDPOINT Libraries libsundials_sunnonlinsolfixedpoint.LIB

Headers sunnonlinsol/sunnonlinsol_fixedpoint.h
PETSCSNES Libraries libsundials_sunnonlinsolpetscsnes.LIB

Headers sunnonlinsol/sunnonlinsol_petscsnes.h
SUNMEMORY Modules
SYSTEM Libraries libsundials_sunmemsys.LIB

Headers sunmemory/sunmemory_system.h
CUDA Libraries libsundials_sunmemcuda.LIB

Headers sunmemory/sunmemory_cuda.h
HIP Libraries libsundials_sunmemhip.LIB

Headers sunmemory/sunmemory_hip.h
SYCL Libraries libsundials_sunmemsycl.LIB

continues on next page

1.2. Installed libraries and exported header files 23

SUNDIALS Installation Guide, v6.1.1

Table 1.1 – continued from previous page
Headers sunmemory/sunmemory_sycl.h

SUNDIALS Packages
CVODE Libraries libsundials_cvode.LIB

Headers cvode/cvode.h
cvode/cvode_bandpre.h
cvode/cvode_bbdpre.h
cvode/cvode_diag.h
cvode/cvode_direct.h
cvode/cvode_impl.h
cvode/cvode_ls.h
cvode/cvode_proj.h
cvode/cvode_spils.h

CVODES Libraries libsundials_cvodes.LIB
Headers cvodes/cvodes.h

cvodes/cvodes_bandpre.h
cvodes/cvodes_bbdpre.h
cvodes/cvodes_diag.h
cvodes/cvodes_direct.h
cvodes/cvodes_impl.h
cvodes/cvodes_ls.h
cvodes/cvodes_spils.h

ARKODE Libraries libsundials_arkode.LIB
libsundials_xbraid.LIB

Headers arkode/arkode.h
arkode/arkode_arkstep.h
arkode/arkode_bandpre.h
arkode/arkode_bbdpre.h
arkode/arkode_butcher.h
arkode/arkode_butcher_dirk.h
arkode/arkode_butcher_erk.h
arkode/arkode_erkstep.h
arkode/arkode_impl.h
arkode/arkode_ls.h
arkode/arkode_mristep.h
arkode/arkode_xbraid.h

IDA Libraries libsundials_ida.LIB
Headers ida/ida.h

ida/ida_bbdpre.h
ida/ida_direct.h
ida/ida_impl.h
ida/ida_ls.h
ida/ida_spils.h

IDAS Libraries libsundials_idas.LIB
Headers idas/idas.h

idas/idas_bbdpre.h
idas/idas_direct.h
idas/idas_impl.h
idas/idas_spils.h

KINSOL Libraries libsundials_kinsol.LIB
Headers kinsol/kinsol.h

kinsol/kinsol_bbdpre.h
kinsol/kinsol_direct.h

continues on next page

24 Chapter 1. SUNDIALS Installation Procedure

SUNDIALS Installation Guide, v6.1.1

Table 1.1 – continued from previous page
kinsol/kinsol_impl.h
kinsol/kinsol_ls.h
kinsol/kinsol_spils.h

1.2. Installed libraries and exported header files 25

SUNDIALS Installation Guide, v6.1.1

26 Chapter 1. SUNDIALS Installation Procedure

Index

B
BUILD_ARKODE (CMake option), 6
BUILD_CVODE (CMake option), 6
BUILD_CVODES (CMake option), 6
BUILD_FORTRAN_MODULE_INTERFACE (CMake option),

10
BUILD_IDA (CMake option), 6
BUILD_IDAS (CMake option), 6
BUILD_KINSOL (CMake option), 6
BUILD_SHARED_LIBS (CMake option), 6
BUILD_STATIC_LIBS (CMake option), 6

C
CALIPER_DIR (CMake option), 14
ccmake, 2
cmake, 3
CMAKE_BUILD_TYPE (CMake option), 6
CMAKE_C_COMPILER (CMake option), 7
CMAKE_C_EXTENSIONS (CMake option), 7
CMAKE_C_FLAGS (CMake option), 7
CMAKE_C_FLAGS_DEBUG (CMake option), 7
CMAKE_C_FLAGS_MINSIZEREL (CMake option), 7
CMAKE_C_FLAGS_RELEASE (CMake option), 7
CMAKE_C_STANDARD (CMake option), 7
CMAKE_CUDA_ARCHITECTURES (CMake option), 9
CMAKE_CXX_COMPILER (CMake option), 7
CMAKE_CXX_EXTENSIONS (CMake option), 8
CMAKE_CXX_FLAGS (CMake option), 7
CMAKE_CXX_FLAGS_DEBUG (CMake option), 7
CMAKE_CXX_FLAGS_MINSIZEREL (CMake option), 7
CMAKE_CXX_FLAGS_RELEASE (CMake option), 8
CMAKE_CXX_STANDARD (CMake option), 8
CMAKE_Fortran_COMPILER (CMake option), 8
CMAKE_Fortran_FLAGS (CMake option), 8
CMAKE_Fortran_FLAGS_DEBUG (CMake option), 8
CMAKE_Fortran_FLAGS_MINSIZEREL (CMake option),

8
CMAKE_Fortran_FLAGS_RELEASE (CMake option), 8
CMAKE_INSTALL_LIBDIR (CMake option), 8
CMAKE_INSTALL_PREFIX (CMake option), 8
cmake-gui, 2

E
ENABLE_CALIPER (CMake option), 14

ENABLE_CUDA (CMake option), 9
ENABLE_HYPRE (CMake option), 10
ENABLE_KLU (CMake option), 10
ENABLE_LAPACK (CMake option), 10
ENABLE_MAGMA (CMake option), 11
ENABLE_MPI (CMake option), 11
ENABLE_ONEMKL (CMake option), 12
ENABLE_OPENMP (CMake option), 12
ENABLE_PETSC (CMake option), 12
ENABLE_PTHREAD (CMake option), 12
ENABLE_RAJA (CMake option), 12
ENABLE_SUPERLUDIST (CMake option), 12
ENABLE_SUPERLUMT (CMake option), 13
ENABLE_SYCL (CMake option), 13
ENABLE_XBRAID (CMake option), 9
EXAMPLES_ENABLE_C (CMake option), 9
EXAMPLES_ENABLE_CUDA (CMake option), 9
EXAMPLES_ENABLE_CXX (CMake option), 9
EXAMPLES_ENABLE_F2003 (CMake option), 9
EXAMPLES_INSTALL (CMake option), 9
EXAMPLES_INSTALL_PATH (CMake option), 9

H
HYPRE_INCLUDE_DIR (CMake option), 10
HYPRE_LIBRARY (CMake option), 10

K
KLU_INCLUDE_DIR (CMake option), 10
KLU_LIBRARY_DIR (CMake option), 10

L
LAPACK_LIBRARIES (CMake option), 10

M
MAGMA_DIR (CMake option), 11
MPI_C_COMPILER (CMake option), 11
MPI_CXX_COMPILER (CMake option), 11
MPI_Fortran_COMPILER (CMake option), 11
MPIEXEC_EXECUTABLE (CMake option), 11

O
ONEMKL_DIR (CMake option), 12

P
PETSC_DIR (CMake option), 12

27

SUNDIALS Installation Guide, v6.1.1

PETSC_INCLUDES (CMake option), 12
PETSC_LIBRARIES (CMake option), 12

S
SUNDIALS_BUILD_WITH_MONITORING (CMake option),

14
SUNDIALS_BUILD_WITH_PROFILING (CMake option),

14
SUNDIALS_F77_FUNC_CASE (CMake option), 14
SUNDIALS_F77_FUNC_UNDERSCORES (CMake option),

14
SUNDIALS_INDEX_SIZE (CMake option), 15
SUNDIALS_INDEX_TYPE (CMake option), 14
SUNDIALS_INSTALL_CMAKEDIR (CMake option), 15
SUNDIALS_MAGMA_BACKENDS (CMake option), 11
SUNDIALS_PRECISION (CMake option), 15
SUNDIALS_RAJA_BACKENDS (CMake option), 12
SUPERLUDIST_INCLUDE_DIR (CMake option), 13
SUPERLUDIST_LIBRARIES (CMake option), 13
SUPERLUDIST_LIBRARY_DIR (CMake option), 13
SUPERLUDIST_OpenMP (CMake option), 13
SUPERLUMT_INCLUDE_DIR (CMake option), 13
SUPERLUMT_LIBRARY_DIR (CMake option), 13
SUPERLUMT_THREAD_TYPE (CMake option), 13

U
USE_GENERIC_MATH (CMake option), 15
USE_XSDK_DEFAULTS (CMake option), 15

X
XBRAID_DIR (CMake option), 15
XBRAID_INCLUDES (CMake option), 15
XBRAID_LIBRARIES (CMake option), 15

28 Index

	SUNDIALS Installation Procedure
	CMake-based installation
	Configuring, building, and installing on Unix-like systems
	Building with the GUI
	Building from the command line

	Configuration options (Unix/Linux)
	Configuration examples
	Working with external Libraries
	Building with LAPACK
	Building with KLU
	Building with SuperLU_DIST
	Building with SuperLU_MT
	Building with PETSc
	Building with hypre
	Building with MAGMA
	Building with oneMKL
	Building with CUDA
	Building with RAJA
	Building with XBraid

	Testing the build and installation
	Building and Running Examples
	Configuring, building, and installing on Windows

	Installed libraries and exported header files
	Using SUNDIALS as a Third Party Library in other CMake Projects

	Index

